簡易檢索 / 詳目顯示

研究生: 陳冠廷
Guan-Ting Chen
論文名稱: 短碼長極化碼與低密度奇偶檢查碼於5G之應用
Short Block Length Polar and LDPC Coding for 5G
指導教授: 林士駿
Shih-Chun Lin
口試委員: 沈中安
Chung-An Shen
謝欣霖
Shin-Lin Shieh
黃昱智
Yu-Chin Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 59
中文關鍵詞: 5G增強型行動寬頻超高可靠及低延遲通訊極化碼連續消除解碼連續消除列表解碼低密度奇偶檢查碼置信度傳播增強型置信度傳播停止集短碼長
外文關鍵詞: 5G, eMBB, URLLC, polar codes, successive cancellation (SC) decoding, successive cancellation list (SCL) decoding, LDPC codes, belief propagation (BP), reinforced belief propagation (RBP), stopping sets, short block length
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極化碼(Polar codes)與低密度奇偶檢查碼(LDPC codes)在近幾年已經被選為未來5G通訊標準中,增強型行動寬頻(Enhance mobile broadband;eMBB)應用情境的控制通道(Control channel)與數據通道(Data channel)的編碼方式。極化碼被理論證明可以達到通道容量(Channel capacity);低密度奇偶檢查碼則是在實作上證明可以非常趨近通道容量。然而,對於超高可靠及低延遲通訊(Ultra-reliable and low latency communications;URLLC)應用情境,碼長越長會造成更高的延遲,所以通道編碼(Channel coding)必須應用在短碼長,因此本論文實際模擬當碼長為308時,這兩種編碼方式之間性能的差異,並探討低密度奇偶檢查碼的解碼方式。利用找出的停止集(Stopping set)與增強型置信度傳播演算法(Reinforced belief propagation),我們提出了新的解碼方法,時間複雜度與置信度傳播(Belief propagation)演算法相近,我們的模擬結果顯示,使用5G通訊標準的eMBB應用場景時,新的演算法與傳統的置信度傳播演算法的解碼效能相比,有更佳的結果。


    Most recently, polar codes and low-density parity check (LDPC) codes have been adopted as the channel coding schemes for the enhanced mobile broadband (eMBB) control and data channels of 5G new radio (NR), respectively. Polar codes and LDPC codes are capacity-achieving and capacity-approaching codes for very large block lengths. However, for ultra-reliable low-latency communications (URLLC), channel coding with short block lengths is a significant issue due to a high latency at long block lengths. For this purpose, we compare these two 5G standard coding schemes with the block length of 308, and then explore a better LDPC decoding algorithm in order to improve the performance degradation caused by short cycles. Based on stopping sets and (BP) algorithm, we develop a simple algorithm to improve the standard belief propagation algorithm. Simulation results show that the proposed stopping sets based reinforced belief propagation (SS-RBP) decoder performs better than conventional BP decoder.

    1 Introduction 1 2 Polar codes in 5G 5 2.1 Channel polarization........................................... 6 2.1.1 Channel combining........................................ 6 2.1.2 Channel splitting........................................ 7 2.1.3 Polarization effect...................................... 8 2.2 Design of polar sequence...................................... 11 2.3 Polar encoding................................................ 13 2.3.1 Kronecker product....................................... 14 2.3.2 Construction of polar codes............................. 14 2.4 Polardecoding................................................. 18 2.4.1 Successive cancellation (SC) decoding................... 18 2.4.2 Successive cancellation list (SCL) decoding............. 20 2.4.3 CRC-aided successive cancellation list (CA-SCL) decoding 23 2.5 Rate matching................................................. 24 2.6 Implementation results........................................ 26 3 Low-Density Parity-Check (LDPC) codes in 5G 28 3.1 Construction of LDPC codes.................................... 29 3.1.1 Representation of LDPC codes............................ 29 3.1.2 Parity check matrix in 5G............................... 30 3.2 Belief propagation (BP)....................................... 31 4 Proposed LDPC decoding algorithm 34 4.1 Stopping Sets................................................. 34 4.2 Stopping sets based reinforced belief propagation (SS-RBP).... 35 5 Simulation results 38 6 Conclusions and future work 40 6.1 Conclusions................................................... 40 6.2 Future work................................................... 41 APPENDIX 41 A 42 A.1 Proof of function f (2.13a) .................................. 42 A.2 Proof of function g (2.13b) .................................. 43

    [1] K.-C. Chao, "Stopping-set Based Decoder for ShortBlock Length LDPC in 5G, "Master's thesis, NTUST, July 2018.
    [2] ITU-R, IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond, 2015.
    [3] 3GPP, Technical Speci cation (TS) 38.212 V15.1.1, NR; Multiplexing and channel coding (Release15), Dec 2017.
    [4] E.Arikan, "Channel Polarization: A Method for Constructing Capacity-
    Achieving Codes for Symmetric Binary-Input Memoryless Channels,"
    IEEE Transactions on Information Theory, vol.55, no.7, pp. 3051-3073, July 2009.
    [5] 3GPP, Final Report of 3GPP TSG RAN WG1 #87 v1.0.0, Nov 2016.
    [6] R.Mori and T.Tanaka, "Performance of polar codes with the construction
    using density evolution," IEEE Communications Letters, vol.13, no.7,
    pp. 519-521, July 2009.
    [7] I. Tal and A.Vardy, "How to construct polar codes," IEEE Transactions
    on Information Theory, vol.59, no.10, pp. 6562-6582, Oct 2013.
    [8] P.Trifonov, "Efficient design and decoding of polar codes," IEEE Transactions on Communications, vol.60, no.11, pp. 3221-3227, Nov 2012.
    [9] G.He, J.Bel ore, I.Land, G.Yang, X.Liu, Y.Chen, R.Li, J.Wang, Y. Ge, R.Zhang, and W.Tong,"Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," in GLOBE-COM 2017 - 2017 IEEE Global Communications Conference, Dec 2017, pp. 1-6.
    [10] 3GPP, R1-167209, Polar code design and rate matching, Huawei, HiSilicon, Aug 2016.
    [11] ──, R1-1701258, WF on Description of Polar Code for NR, Ericsson,
    AT&T, LG, Intel, Qualcomm, Nokia, ASB, ZTE, Samsung, Jan 2017.
    [12] I.Tal and A.Vardy, "List Decoding of Polar Codes," IEEE Transactions
    on Information Theory, vol.61, no.5, pp. 2213-2226, May 2015.
    [13] A. Balatsoukas-Stimming, M.B.Parizi, and A.Burg, "LLR-Based Successive Cancellation List Decoding of Polar Codes," IEEE Transactions
    on Signal Processing, vol.63, no.19, pp.5165-5179, Oct 2015.
    [14] K. Niu and K.Chen, "CRC-Aided Decoding of Polar Codes," IEEE Communications Letters, vol.16, no.10, pp.1668-1671, October 2012.
    [15] B. Li, H.Shen, and D.Tse, "An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check," IEEE Communications Letters, vol.16, no.12, pp. 2044-2047, December 2012.
    [16] A. Ghosh, J.Zhang, J.G.Andrews, and R.Muhamed, Fundamentals of LTE, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.
    [17] A. Eslami and H.Pishro-Nik, "A practical approach to polar codes," in
    2011 IEEE International Symposiumon Information Theory Proceedings, July 2011, pp. 16-20.
    [18] R. WangandR.Liu, "A Novel Puncturing Scheme for Polar Codes,"
    IEEE Communications Letters, vol.18, no.12, pp. 2081-2084, Dec 2014.
    [19] V. Bioglio, C.Condo, and I.Land, "Design of Polar Codes in 5G New Radio," vol.1804.04389, 2018. [Online]. Available: http://arxiv.org/abs/1804.04389
    [20] 3GPP, R1-1802068, Onchannelcodingtargetinghighreliability, ZTE, Sanechips, Mar 2018.
    [21] R. Gallager, "Low-density parity-check codes," IRE Transactions on Information Theory, vol.8, no.1, pp. 21-28, January 1962.
    [22] D. J.C.MacKay and R.M.Neal, "Near Shannon limit performance of low density parity check codes," ElectronicsLetters, vol.33, no.6, pp. 457-458, March 1997.
    [23] S.-Y. Chung, G.D.Forney, T.J.Richardson, and R.Urbanke, "On the
    design of low-density parity-checkcodeswithin0.0045dBoftheShannon
    limit," IEEE Communications Letters, vol.5, no.2, pp. 58-60, Feb 2001.
    [24] R. Tanner, "A recursive approach to low complexity codes," IEEE Transactions on Information Theory, vol.27, no.5, pp. 533-547, September 1981.
    [25] M.P.C.Fossorier, "Quasicyclic low-density parity-check codes from circulant permutation matrices," IEEE Transactions on Information Theory, vol.50, no.8, pp. 1788-1793, Aug 2004.
    [26] 3GPP, R1-1711982, WF on LDPC parity check matrices, Nokia, Samsung,
    Huawei, ZTE, MediaTek, Qualcomm, LG, Ericsson, Intel, CATT, June 2017.
    [27] T. Richardson, "Error Floors of LDPC Codes," in Proc.2003 Annu.Allerton Conf. Commun. Control Comput., 2003, pp. 1426-1435.
    [28] D. J.MacKay and M.S.Postol, "Weaknesses of Margulis and Ramanujan-
    Margulis Low-Density Parity-Check Codes," Electronic Notes in Theoretical Computer Science, vol.74, pp.97-104, June 2003.
    [29] P.O.Vontobel and R.Koetter, "Graph-Cover Decoding and Finite-
    Length Analysis of Message-Passing Iterative Decoding of LDPC Codes,"
    Dec 2005.
    [30] L. Dolecek, Z.Zhang, V.Anantharam, M.J.Wainwright, and B.Nikolic, "Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based
    LDPC Codes," IEEE Transactions on Information Theory, vol.56, no.1,
    pp. 181-201, Jan 2010.
    [31] C. Di, D.Proietti, I.E.Telatar, T.J.Richardson, and R.L.Urbanke,
    "Finite-length analysis of low-density parity-check codes on the binary
    erasure channel," IEEE Transactions on Information Theory, vol.48,
    no. 6, pp. 1570-1579, June 2002.
    [32] E. Rosnes and o.Ytrehus, "An Efficient Algorithm to Find All Small-Size
    Stopping Sets of Low-Density Parity-Check Matrices," IEEE Transactions
    on Information Theory, vol.55, no.9, pp. 4167-4178, Sep 2009.
    [33] Y. Wei, S.Lin, S.Lin, H.Su, and H.V.Poor, "Residual-Quantization
    Based Code Design for Compressing Noisy Sources With Arbitrary Decoder Side Information," IEEE Transactions on Communications, vol.64, no. 4, pp. 1711-1725, April 2016.
    [34] J. Chavas, C.Furtlehner, M.Mezard, and R.Zecchina, "Survey-
    propagation decimation through distributed local computations," Journal
    of Statistical Mechanics: Theory and Experiment, p.p 11016, 2005.
    [35] S. Kang, J.Moon, J.Ha, and J.Shin, "Breaking the Trapping Sets in
    LDPC Codes: Check Node Removal and Collaborative Decoding," IEEE
    Transactions on Communications, vol.64, no.1, pp. 15-26, Jan 2016.
    [36] O. Iscan, D.Lentner, and W.Xu, "A Comparison of Channel Coding
    Schemes for 5G Short Message Transmission," in 2016 IEEE Globecom
    Workshops (GC Wkshps), Dec 2016, pp. 1-6.
    [37] M. Seidl, A.Schenk, C.Stierstorfer, and J.B.Huber, "Polar-Coded Modulation," IEEE Transactions on Communications, vol.61, no.10, pp. 4108-4119, October 2013.

    QR CODE