簡易檢索 / 詳目顯示

研究生: 高君豪
Chiun-How Kao
論文名稱: 巨量資料之矩陣視覺化
Matrix Visualization for Big Data
指導教授: 楊傳凱
Chuan-kai Yang
陳君厚
Chun-houh Chen
口試委員: 楊傳凱
Chuan-kai Yang
陳君厚
Chun-houh Chen
張源俊
Yuan-chin Ivan Chang
李育杰
Yuh-Jye Lee
吳漢銘
Han-Ming Wu
學位類別: 博士
Doctor
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 133
中文關鍵詞: 矩陣視覺化巨量資料探索式資料分析象徵式資料分析廣義相關圖
外文關鍵詞: Matrix Visualization, Big Data, Exploratory Data Analysis, Symbolic Data Analysis, Generalized Association Plots
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於生醫與工業技術的不斷創新,電腦科技的持續開發,資料產生與蒐集方式急遽改變,資料規模急速成長,而資料品質易參差不齊;相關資料檢驗與分析等統計方法之需求也隨之產生,巨量資料之計算技術與統計分析方法更是目前重要的研究趨勢。視覺化(visualization)與探索式資料分析 (Exploratory Data Analysis, EDA)在巨量資料的深層分析(deep analytics)將扮演重要的角色,但也有其待解決的問題與開發的技術。目前巨量資料視覺化環境偏向以節點-連結圖(node-link diagrams)為主呈現方式的動態網絡圖(dynamic network drawing),其基本技術為既有的 2D、3D 散佈圖(scatterplot),其優點為較不耗記憶體、計算能力與顯示空間;但是能夠呈現的資料維度相對有限。本研究首先針對矩陣視覺化(matrix visualization)分析連續型巨量資料的兩個困難進行探討:(一) 關係矩陣計算與排序之運算能力限制。(二)在有限螢幕範圍有效顯示巨量資料的矩陣視覺化。我們使用廣義相關圖(Generalized Association Plots)結合象徵性資料分析(Symbolic Data Analysis)與Hadoop/Spark計算環境來進行矩陣視覺化及叢聚分析,藉以突破巨量資料於關係矩陣計算、排序與呈現時所面臨的困難,並提供一套可以觀看連續型巨量資料之 EDA 工具。我們以台灣全民健康保險研究資料庫之百萬抽樣檔作為實際範例,呈現巨量資料之矩陣視覺化之分析結果。當完成連續型巨量資料矩陣視覺化環境開發後,未來將進行非連續型巨量資料之矩陣視覺化方法探勘,這包含二元、類別、混合、地圖學等可能形態巨量資料之矩陣視覺化;也將面臨與連續型巨量資料矩陣視覺化環境開發不同之挑戰。


    The innovation of biomedical and industrial techniques with continued development of computer technology have caused dramatic changes of data generation and collection. Data scale tends to grow exponentially while data quality becomes unreliable. Statistical methods for validation and analysis of big data with its computation techniques became important research topics nowadays. Visualization and exploratory data analysis (EDA) are going to play essential roles in deep analytics on big data analysis. Yet there are some problems to be solved and techniques to be developed. Most current big data visualization methods focus on node-link diagram based dynamic network drawing. They mainly rely on the 2D and 3D scatterplots that do not consume much computing memory, power, and display space; however, the drawback is the limitation on dimensions of variable for visualization. This works first aims to resolve the potential difficulties for applying the techniques of matrix visualization for continuous type big data: (1) computation and permutation of proximity matrices; (2) display of big data. We shall integrate the strength of GAP (generalized association plots), SDA (symbolic data analysis), with Hadoop/Spark computing facility for taking care of these problems of computation and display and for creating environment for matrix visualization of continuous type big data. Here we apply the proposed MV for big data techniques on the 2000 Longitudinal Health Insurance Database (LHID2000) of National Health Insurance Research Database (NHIRD) published by National Health Research Institutes (NHRI) in Taiwan. We will then move on and expand the environment for matrix visualization of continuous type big data to binary, categorical, cartography, and other types of big data. We expect to face even more challenging difficulties while developing related techniques.

    -‡X iii ABSTRACT v Œ vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . 6 2 RelatedWorks 7 2.1 Symbolic Data Analysis (SDA) . . . . . . . . . . . . . . 7 2.1.1 Visualization for Symbolic Data . . . . . . . . . 9 2.2 Visualization for Big Data . . . . . . . . . . . . . . . . 10 2.2.1 Interface Schemes of Big Data Visualization . . 13 2.3 Matrix Visualization (MV) . . . . . . . . . . . . . . . . 18 3 Preliminaries 20 3.1 Generalized Association Plots (GAP) . . . . . . . . . . 20 3.1.1 Presentation of Raw Data Matrix and Selection of Proximity Matrices . . . . . . . . . . . . . . 21 3.1.2 Seriation of Proximity Matrices and Raw Data Matrix . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Partitions of Permuted Matrix Plots . . . . . . . 27 3.1.4 Sufficient Statistical Graph . . . . . . . . . . . . 27 3.1.5 Summary of GAP . . . . . . . . . . . . . . . . . 30 3.2 Spark and Hadoop . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Apache Hadoop . . . . . . . . . . . . . . . . . . 31 3.2.2 Apache Spark . . . . . . . . . . . . . . . . . . . 33 4 Proposed Methods 37 4.1 Exploratory Data Analysis of Interval-valued Symbolic Data with Matrix Visualization . . . . . . . . . . . . . . 38 4.1.1 Proximity Matrix for Interval (range) Variables . 39 4.1.2 Distance Matrix for Concepts with Interval Variables . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.3 Color Coding for Interval (range) Data Table . . 45 4.1.4 Seriation/Clustering and Matrix Visualization . . 48 4.1.5 Unique Features for MV of Interval symbolic data with the computation environment . . . . . 50 4.2 Matrix Visualization for Big Data . . . . . . . . . . . . 60 4.2.1 Reducing Data Size . . . . . . . . . . . . . . . . 63 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 System Architecture . . . . . . . . . . . . . . . 72 4.3.2 User Interface . . . . . . . . . . . . . . . . . . . 76 5 Real Data Analysis 80 5.1 Presentation of Raw Data Matrix . . . . . . . . . . . . . 80 5.2 Matrix Visualization After Reducing Data Size . . . . . 84 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 Conclusions and Future Work 101 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 102

    [1] bigvis. https://github.com/hadley/bigvis.
    [2] Chun Houh Chen lab of information visualization. https://gap.stat.
    sinica.edu.tw. Accessed: 2018-01-01.
    [3] ggplot2.sparkr. http://skku-skt.github.io/ggplot2.SparkR/.
    [4] tabplot. https://cran.r-project.org/web/packages/tabplot/
    vignettes/tabplot-vignette.html.
    [5] Abousalh-Neto, N. A. and Kazgan, S. (2012). Big data exploration through visual
    analytics. In Visual Analytics Science and Technology (VAST), 2012 IEEE Conference
    on, pages 285–286. IEEE.
    [6] Agrawal, R., Kadadi, A., Dai, X., and Andres, F. (2015). Challenges and opportunities
    with big data visualization. In Proceedings of the 7th International
    Conference on Management of computational and collective intElligence in Digital
    EcoSystems, pages 169–173. ACM.
    [7] Ali, S. M., Gupta, N., Nayak, G. K., and Lenka, R. K. (2016). Big data visualization:
    Tools and challenges. In Contemporary Computing and Informatics (IC3I),
    2016 2nd International Conference on, pages 656–660. IEEE.
    [8] Apache Software Foundation. Apache spark.
    [9] Apache Software Foundation. Hadoop.
    [10] Bar-Joseph, Z., Gifford, D. K., and Jaakkola, T. S. (2001). Fast optimal leaf
    ordering for hierarchical clustering. Bioinformatics, 17(suppl 1):S22–S29.
    [11] Bastian, M., Heymann, S., Jacomy, M., et al. (2009). Gephi: an open source
    software for exploring and manipulating networks. Icwsm, 8:361–362.
    [12] Bederson, B. B. and Hollan, J. D. (1994). Pad++: a zooming graphical interface
    for exploring alternate interface physics. In Proceedings of the 7th annual ACM
    symposium on User interface software and technology, pages 17–26. ACM.
    [13] Bederson, B. B., Meyer, J., and Good, L. (2003). Jazz: an extensible zoomable
    user interface graphics toolkit in java. In The Craft of Information Visualization,
    pages 95–104. Elsevier.
    [14] Bertin, J. (1983). Semiology of graphics: diagrams, networks, maps.
    [15] Bertrand, P. and Diday, E. (1985). A visual representation of the compatibility
    between an order and a dissimilarity index: the pyramids. Computational Statistics
    Quarterly, 2(1):31–41.
    [16] Billard, L. and Diday, E. (2003). From the statistics of data to the statistics of
    knowledge: symbolic data analysis. Journal of the American Statistical Association,
    98(462):470–487.
    [17] Billard, L. and Diday, E. (2006). Symbolic data analysis: Conceptual statistics
    and data mining john wiley.
    [18] Billard, L., Douzal-Chouakria, A., and Diday, E. (2008). Symbolic principal
    component for interval-valued observations.
    [19] Bock, H.-H. (2002). Clustering methods and Kohonen maps for symbolic data.
    Journal of the Japanese Society of Computational Statistics : JJSCS, 15:13 S.
    [20] Bock, H.-H. (2008). Visualizing symbolic data by kohonen maps. Symbolic Data
    Analysis and the SODAS Software, Wiley, pages 205–234.
    [21] Borland, D. and Ii, R. M. T. (2007). Rainbow color map (still) considered harmful.
    IEEE computer graphics and applications, 27(2).
    [22] Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents.
    IEEE transactions on visualization and computer graphics, 17(12):2301–2309.
    [23] BREWER, C. (1994). Color use guidelines for mapping and visualization. in
    maceachren, am & taylor, drf (eds.) visualization in modern cartography. tarrytown,
    ny.
    [24] Brewer, C. A. (1999). Color use guidelines for data representation. In Proceedings
    of the Section on Statistical Graphics, American Statistical Association, pages
    55–60.
    [25] Brito, P. (2002). Hierarchical and pyramidal clustering for symbolic data. Journal
    of the Japanese Society of Computational Statistics, 15(2):231–244.
    [26] Chang, S.-C., Chen, C.-h., Chi, Y.-Y., and Ouyoung, C.-W. (2002). Relativity
    and resolution for high dimensional information visualization with generalized association
    plots (gap). In Compstat, pages 55–66. Springer.
    [27] Chavent, M., de Carvalho, F. d. A., Lechevallier, Y., and Verde, R. (2006). New
    clustering methods for interval data. Computational statistics, 21(2):211–229.
    [28] Chavent, M. and Lechevallier, Y. (2002). Dynamical clustering of interval data:
    optimization of an adequacy criterion based on hausdorff distance. In Classification,
    clustering, and data analysis, pages 53–60. Springer.
    [29] Chen, C.-H. (2002). Generalized association plots: Information visualization via
    iteratively generated correlation matrices. Statistica Sinica, pages 7–29.
    [30] Chen, C.-H., Hwu, H.-G., Jang, W.-J., Kao, C.-H., Tien, Y.-J., Tzeng, S., and
    Wu, H.-M. (2004). Matrix visualization and information mining. In COMPSTAT
    2004Proceedings in Computational Statistics, pages 85–100. Springer.
    [31] Chouakria, A., Cazes, P., and Diday, E. (2000). Symbolic principal component
    analysis. Analysis of Symbolic Data, ed. HH Bock, and E. Diday, pages 200–212.
    [32] Cockburn, A., Karlson, A., and Bederson, B. B. (2009). A review of overview+
    detail, zooming, and focus+ context interfaces. ACM Computing Surveys (CSUR),
    41(1):2.
    [33] Cox, T. F. and Cox, M. A. (2000). Multidimensional scaling. CRC press.
    [34] de Carvalho, F. d. A., Brito, P., and Bock, H.-H. (2006). Dynamic clustering for
    interval data based on l2 distance. Computational Statistics, 21(2):231–250.
    [35] de Falguerolles, A., Friedrich, F., and Sawitzki, G. (1996). A tribute to j. bertin’s
    graphical data analysis.
    [36] de Souza, R. M. and De Carvalho, F. d. A. (2004). Clustering of interval data
    based on city–block distances. Pattern Recognition Letters, 25(3):353–365.
    [37] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on
    large clusters. Communications of the ACM, 51(1):107–113.
    [38] Denoeux, T. and Masson, M. (2000). Multidimensional scaling of interval-valued
    dissimilarity data. Pattern Recognition Letters, 21(1):83–92.
    [39] Diday, E. (1988). The symbolic approach in clustering and related methods of
    data analysis. Classification and related methods of data analysis, pages 673–684.
    [40] Diday, E. and Bock, H. H. (2000). Analysis of symbolic data: Exploratory methods
    for extracting statistical information from complex data.
    [41] Diday, E. and Esposito, F. (2003). An introduction to symbolic data analysis and
    the sodas software. Intelligent Data Analysis, 7(6):583–601.
    [42] Diday, E. and Noirhomme-Fraiture, M. (2008). Symbolic data analysis and the
    SODAS software. John Wiley & Sons.
    [43] Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis
    and display of genome-wide expression patterns. Proceedings of the National
    Academy of Sciences, 95(25):14863–14868.
    [44] El Golli, A., Conan-Guez, B., and Rossi, F. (2004). A self-organizing map for
    dissimilarity data. In Classification, Clustering, and Data Mining Applications,
    pages 61–68. Springer.
    [45] Elmqvist, N., Do, T.-N., Goodell, H., Henry, N., and Fekete, J.-D. (2008). Zame:
    Interactive large-scale graph visualization. In Visualization Symposium, 2008. PacificVIS’
    08. IEEE Pacific, pages 215–222. IEEE.
    [46] Elmqvist, N., Dragicevic, P., and Fekete, J.-D. (2011). Color lens: Adaptive color
    scale optimization for visual exploration. IEEE Transactions on Visualization and
    Computer Graphics, 17(6):795–807.
    [47] Friendly, M. (2002). Corrgrams: Exploratory displays for correlation matrices.
    The American Statistician, 56(4):316–324.
    [48] Furnas, G. W. (1986). Generalized fisheye views, volume 17. ACM.
    [49] Gale, N., Halperin, W. C., and Costanzo, C. M. (1984). Unclassed matrix shading
    and optimal ordering in hierarchical cluster analysis. Journal of Classification,
    1(1):75–92.
    [50] Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On the readability of
    graphs using node-link and matrix-based representations: a controlled experiment
    and statistical analysis. Information Visualization, 4(2):114–135.
    [51] Gioia, F. and Lauro, C. N. (2006). Principal component analysis on interval data.
    Computational Statistics, 21(2):343–363.
    [52] Godinho, P. I. A., Meiguins, B. S., Meiguins, A. S. G., do Carmo, R. M. C.,
    de Brito Garcia, M., Almeida, L. H., and Lourenco, R. (2007). Prisma-a multidimensional
    information visualization tool using multiple coordinated views. In Information
    Visualization, 2007. IV’07. 11th International Conference, pages 23–32.
    IEEE.
    [53] Gowda, K. C. and Diday, E. (1991). Symbolic clustering using a new dissimilarity
    measure. pattern recognition, 24(6):567–578.
    [54] Groenen, P. J., Winsberg, S., Rodriguez, O., and Diday, E. (2006). I-scal: Multidimensional
    scaling of interval dissimilarities. Computational Statistics & Data
    Analysis, 51(1):360–378.
    [55] Guo, J., Li, W., Li, C., and Gao, S. (2012). Standardization of interval symbolic
    data based on the empirical descriptive statistics. Computational Statistics & Data
    Analysis, 56(3):602–610.
    [56] Henry, N. and Fekete, J.-D. (2006). Matrixexplorer: a dual-representation system
    to explore social networks. IEEE transactions on visualization and computer
    graphics, 12(5).
    [57] Huber, P. J. (1985). Projection pursuit. The annals of Statistics, pages 435–475.
    [58] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in
    science & engineering, 9(3):90–95.
    [59] Hwu, H.-G., Chen, C.-H., Hwang, T.-J., Liu, C.-M., Cheng, J. J., Lin, S.-K., Liu,
    S.-K., Chen, C.-H., Chi, Y.-Y., Ou-Young, C.-W., et al. (2002). Symptom patterns
    and subgrouping of schizophrenic patients: significance of negative symptoms assessed
    on admission. Schizophrenia Research, 56(1):105–119.
    [60] Ichino, M. and Yaguchi, H. (1994). Generalized minkowski metrics for mixed
    feature-type data analysis. IEEE Transactions on Systems, Man, and Cybernetics,
    24(4):698–708.
    [61] Irpino, A., Lauro, C., and Verde, R. (2003). Visualizing symbolic data by closed
    shapes. In Between Data Science and Applied Data Analysis, pages 244–251.
    Springer.
    [62] Kao, C.-H., Nakano, J., Shieh, S.-H., Tien, Y.-J., Wu, H.-M., Yang, C.-K., and
    Chen, C.-h. (2014). Exploratory data analysis of interval-valued symbolic data with
    matrix visualization. Computational Statistics & Data Analysis, 79:14–29.
    [63] Kay, S. R., Fiszbein, A., and Opfer, L. A. (1987). The positive and negative
    syndrome scale (panss) for schizophrenia. Schizophrenia bulletin, 13(2):261.
    [64] Keim, D. A. (2002). Information visualization and visual data mining. IEEE
    transactions on Visualization and Computer Graphics, 8(1):1–8.
    [65] Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1-3):1–6.
    [66] Lauro, C. N., Palumbo, F., and DEnza, A. I. (2003). New graphical symbolic
    objects representations in parallel coordinates. In Between data science and applied
    data analysis, pages 288–295. Springer.
    [67] Lauro, N., Verde, R., and Palumbo, F. (2000). Factorial discriminant analysis on
    symbolic objects. Analysis of Symbolic Data: Exploratory Methods for Extracting
    Statistical Information from Complex Data, 15:212–233.
    [68] Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of
    the American Statistical Association, 86(414):316–327.
    [69] Liiv, I. (2010). Seriation and matrix reordering methods: An historical overview.
    Statistical Analysis and Data Mining: The ASA Data Science Journal, 3(2):70–91.
    [70] Liiv, I., Opik, R., Ubi, J., and Stasko, J. (2012). Visual matrix explorer for
    collaborative seriation. Wiley Interdisciplinary Reviews: Computational Statistics,
    4(1):85–97.
    [71] Ling, R. L. (1973). A computer generated aid for cluster analysis. Communications
    of the ACM, 16(6):355–361.
    [72] Marchette, D. J. and Solka, J. L. (2003). Using data images for outlier detection.
    Computational statistics & data analysis, 43(4):541–552.
    [73] Matkovic, K., Hauser, H., Sainitzer, R., and Groller, M. E. (2002). Process visualization
    with levels of detail. In Information Visualization, 2002. INFOVIS 2002.
    IEEE Symposium on, pages 67–70. IEEE.
    [74] Micallef, L., Dragicevic, P., and Fekete, J.-D. (2012). Assessing the effect of
    visualizations on bayesian reasoning through crowdsourcing. IEEE Transactions
    on Visualization and Computer Graphics, 18(12):2536–2545.
    [75] Michailidis, G. and de Leeuw, J. (1998). The gifi system of descriptive multivariate
    analysis. Statistical Science, pages 307–336.
    [76] Minnotte, M. and West, R. W. (1998). The data image: a tool for exploring high
    dimensional data sets. In Proceedings of the ASA Section on Statistical Graphics,
    pages 25–33. Citeseer.
    [77] Neto, E. d. A. L. and de Carvalho, F. d. A. (2008). Centre and range method for
    fitting a linear regression model to symbolic interval data. Computational Statistics
    & Data Analysis, 52(3):1500–1515.
    [78] Neto, E. d. A. L. and de Carvalho, F. d. A. (2010). Constrained linear regression
    models for symbolic interval-valued variables. Computational Statistics & Data
    Analysis, 54(2):333–347.
    [79] Noirhomme-Fraiture, M. and Rouard, M. (2000). Visualizing and editing symbolic
    objects. In Analysis of Symbolic Data, pages 125–138. Springer.
    [80] Peng, R. D. (2008). A method for visualizing multivariate time series data.
    [81] Robinson, W. S. (1951). A method for chronologically ordering archaeological
    deposits. American antiquity, 16(4):293–301.
    [82] Rosenberg, N. A. (2004). Distruct: a program for the graphical display of population
    structure. Molecular Ecology Resources, 4(1):137–138.
    [83] Saito, T., Miyamura, H. N., Yamamoto, M., Saito, H., Hoshiya, Y., and Kaseda,
    T. (2005). Two-tone pseudo coloring: Compact visualization for one-dimensional
    data. In Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on,
    pages 173–180. IEEE.
    [84] Sarkar, M. and Brown, M. H. (1994). Graphical fisheye views. Communications
    of the ACM, 37(12):73–83.
    [85] Scherr, M. (2008). Multiple and coordinated views in information visualization.
    Trends in Information Visualization, 38.
    [86] Silva, A. P. D. and Brito, P. (2006). Linear discriminant analysis for interval data.
    Computational Statistics, 21(2):289–308.
    [87] Sokal, R. R. and Rohlf, F. J. (1962). The comparison of dendrograms by objective
    methods. Taxon, 11(2):33–40.
    [88] Stirrup, J., Nandeshwar, A., Ohmann, A., and Floyd, M. (2016). Tableau: Creating
    Interactive Data Visualizations. Packt Publishing.
    [89] Thudt, A., Baur, D., and Carpendale, S. (2013). Visits: A spatiotemporal visualization
    of location histories. In Proceedings of the eurographics conference on
    visualization.
    [90] Tien, Y.-J., Lee, Y.-S., Wu, H.-M., and Chen, C.-H. (2008). Methods for simultaneously
    identifying coherent local clusters with smooth global patterns in gene
    expression profiles. BMC bioinformatics, 9(1):155.
    [91] Tukey, J. W. (1977). Exploratory data analysis, volume 2. Reading, Mass.
    [92] Verde, R. and Lechevallier, Y. (2005). Crossed clustering method on symbolic
    data tables. In New developments in classification and data analysis, pages 87–94.
    Springer.
    [93] Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines
    for using multiple views in information visualization. In Proceedings of the working
    conference on Advanced visual interfaces, pages 110–119. ACM.
    [94] Ware, C. (2012). Information visualization: perception for design. Elsevier.
    [95] Wegman, E. J. (1990). Hyperdimensional data analysis using parallel coordinates.
    Journal of the American Statistical Association, 85(411):664–675.
    [96] White, T. (2012). Hadoop: The definitive guide. ” O’Reilly Media, Inc.”.
    [97] Wijffelaars, M., Vliegen, R., Van Wijk, J. J., and Van Der Linden, E.-J. (2008).
    Generating color palettes using intuitive parameters. In Computer Graphics Forum,
    volume 27, pages 743–750. Wiley Online Library.
    [98] Wilkinson, L. and Friendly, M. (2009). The history of the cluster heat map. The
    American Statistician, 63(2):179–184.
    [99] Wu, H.-M., Tien, Y.-J., and Chen, C.-h. (2010). Gap: A graphical environment for
    matrix visualization and cluster analysis. Computational Statistics & Data Analysis,
    54(3):767–778.
    [100] Yi, J. S., ah Kang, Y., and Stasko, J. (2007). Toward a deeper understanding of
    the role of interaction in information visualization. IEEE transactions on visualization
    and computer graphics, 13(6):1224–1231.
    [101] Zhu, Y. (2012). Introducing google chart tools and google maps api in data
    visualization courses. IEEE computer graphics and applications, 32(6):6–9.

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE