Author: |
梁辰宇 Chen-yu Liang |
---|---|
Thesis Title: |
開發適用於微電網饋線保護之DSP型方向性過電流電驛 Development of a DSP-based Directional Overcurrent Relay for Feeder Protection in Microgrid |
Advisor: |
辜志承
Jyh-cherng Gu |
Committee: |
蕭一龍
I-lung Show 楊明達 Ming-ta Yang 郭明哲 Ming-tse Kuo |
Degree: |
碩士 Master |
Department: |
電資學院 - 電機工程系 Department of Electrical Engineering |
Thesis Publication Year: | 2014 |
Graduation Academic Year: | 102 |
Language: | 中文 |
Pages: | 144 |
Keywords (in Chinese): | 方向性過電流電驛 、微電網 、改良式離散傅立葉轉換 、諧波 、DSP |
Keywords (in other languages): | Directional Overcurrent Relaty, Microgrid, modified DFT, Harmonic, DSP |
Reference times: | Clicks: 468 Downloads: 3 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
傳統配電系統為輻射式架構,故障電流為單一方向,其饋線保護方式為使用非方向性過電流電驛;但隨著分散式電源之開發與併入,可形成併網模式或孤島模式運轉之微電網,故障電流不再為單一方向,故其饋線之過電流保護需使用具備參考量與動作量之方向性過電流電驛,傳統上,參考量係透過比壓器取得電壓,造成成本上之增加。
當微電網運轉於孤島模式時,若故障點靠近比壓器位置,亦不能因電壓過低而導致方向判斷錯誤。基於此,本論文將開發以DSP為基礎僅利用電流訊號之演算法,適用於微電網饋線保護之電流型方向性過電流電驛。本演算法結合改良式離散傅立葉轉換之快速、準確濾波能力,可解決故障電流含有直流衰減成份之問題。因微電網中分散式電源的併入與現代化電子負載的日漸普及,都會產生諧波,為監測供電與用電品質,在本電驛上加入諧波分析之功能,最後透過Matlab/Simulink與Doble波形重現模擬器驗証本論文所研製的適用於微電網饋線保護之方向性過電流電驛的可行性。
Traditionally, the distribution system is radial type. The fault current presents in top-dowm direction; hence, a non-direction overcurrent relay may apply for feeder protection. Nowaday, Distributed Generations (DG) have been widely installed and fed into the distribution system. The system with DG may form as Microgrid and operate in Grid-Connected Mode or Islanded Mode. However, the fault current in Microgrid no longer presents in one-way. The directional function relay must be introduced instead of non-directional one. It will increase the installation cost since the additional Protecntial Transfomers (PT) are required to provide the reference quantity.
In case of the Microgrid operation in Island Mode, the fault location is close to the PT installation. The refrence quantity may be too low to provide the direction check for relay. To avoid this possibility a DSP-based Current-Only algorithm has been propsed. It can simply and easily apply feeder protection on Microgrids. Basically, the algorithm is base on modified DFT inherent in high calculation speed and fast filtering ability, the exponential decaying DC component in initial fault current can easily be removed within one more cycle. In addition, the more DGs and modern electronic loads in Microgrids the more harmonic issues need to be concerned. To monitor the power quality, the harmonic analysis function also be included in the proposed relay. Finally, the proposed relay is succeddfully tested and varified by Matlab/Simulink and Doble emulator. It concluded that the proposed relay is good for feeder protection in Microgrids.
[1] Rohjans, S., Uslar, M., Bleiker, R., González, J., Specht, M., Suding, T., and Weidelt T., “Survey of Smart Grid Standardization Studies and Recommendations”, in Proceeding of the 1st Smart Grid Communications IEEE International Conference, pp. 583-588, 4-6, October, 2010.
[2] Rohjans, S., Uslar, M., Bleiker, R., González, J., Specht, M., Suding, T., and Weidelt T., “Survey of Smart Grid Standardization Studies and Recommendations—Part 2”, in Proceeding of Innovative Smart Grid Technologies Conference Europe, pp. 1-6, 11-13, October, 2010.
[3] SMB Smart Gird Strategic Group (SG3) “IEC Smart Gird Standardization Roadmap”, Edition 1.0, June, 2010.
[4] 陳朝順、許振廷、林嘉宏,「微電網系統暫態減緩之智慧型控制技術建立」,行政院原子能委員會委託研究計畫研究報告(1012001INER044),高雄,台灣,2012年12月。
[5] Laaksonen H. J., “Protection Principles for Future Microgrids”, IEEE Transactions on Power Electronics, Vol.25, No.12, pp. 2910-2918, December, 2010.
[6] Salam, A. A., Mohamed, A., and Hannan, M. A., “Technical Challenges on Microgrids”, ARPN Journal of Engineering and Applied Sciences, Vol. 3, No. 6, December, 2008.
[7] Horak, J., “Directional overcurrent relaying (67) concepts”, in Proceeding of IEEE Conference on Power Engineering, pp. 164-176, April, 2006.
[8] Ukil, A., Deck, B., and Shah, V. H., “Current-Only Directional Overcurrent Relay”, Sensors Journal, IEEE, pp. 1403-1403, June, 2011.
[9] Ukil, A., Deck, B., and Shah, V. H., “Smart Distribution Protection Using Current-Only Directional Overcurrent Relay”, in Proceedings of Innovative Smart Grid Technologies Conference Europe, IEEE PES, pp. 1-7, 11-13, October, 2010.
[10] Ukil, A., Deck, B., and Shah, V. H., “Current-Only Directional Overcurrent Protection for Distribution Automation: Challenges and Solutions”, IEEE Transactions on Smart Grid, pp. 1687-1694, December, 2012.
[11] 于尚禮,「應用改良式傅立葉濾波演算法於串聯補償輸電線之故障定位」,博士論文,國立台灣科技大學,台北,2011年7月。
[12] 蘇林、張建華、王利、苗唯時、吳子平,「微電網相關問題及技術研究」,中國電力系統保護與控制,2010年10月。
[13] Katiraei, F., and Iravani, M. R., “Power management strategies for a microgrid with multiple distributed generation units”, IEEE Transactions on Power Systems, Vol. 21, No. 4, pp. 1821-1831, November, 2006.
[14] Robert, H. L., and Piagi, P., ‘‘Extended Microgrid Using Distribution Energy Resources’’, Power Engineering Society General Meeting, pp. 1-5, 24-28, June, 2007.
[15] Lasseter, R. H., “CERTS Microgrid”, in Proceeding of IEEE Conference on Power Engineering, pp. 1-5, 16-18, April, 2007.
[16] Vieira, J. C. M., Freitas, W., Xu, W., and Morelato, A., “Performance of Frequency Relays for Distributed Generation Protection”, IEEE Transactions on Power Electronics, pp. 1120-1127, July, 2006.
[17] IEEE Std. 1547.2, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, 2008.
[18] IEEE Std. 519, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1992.
[19] 日本系統連繫技術要件檢討委員會報告書,「電力系統連繫技術要件」,2006年。
[20] 日本電氣協會,「分散式電源系統連繫技術指針」,2004年。
[21] 台灣電力公司,「台灣電力股份有限公司第一型及第二型再生能源發電設備併聯作業須知」,2013年6月。
[22] 黃聖凱,「實現以IEC61850通訊為基礎之微電網保護系統」,碩士論文,國立台灣科技大學,台北,2013年6月。
[23] 許金和、李雪銀,電機設備保護,高立圖書股份有限公司,台北,第145頁,1997年1月。
[24] IEEE Std. 37.2, IEEE Standard Electrical Power System Device Function Numbers, Acronyms, and Contact Designations, May, 2008.
[25] 李宏任,實用保護電驛,全華科技圖書股份有限公司,台北,第6-10 - 6-12頁,2000年4月。
[26] IEEE Std. 37.112, IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays, September, 1996.
[27] 俞齊山、陳炳男、陳錦龍,「以同步量測為基礎之彈性交流輸電系統新型電驛與穩定度控制器之研究(1/2)」,國科會專題研究報告(NSC92-2213-E-014-015),桃園,台灣,2004年7月。
[28] James, H. M., Romald, W. S., and Mark, A. Y., Signal Processing First, Pearson Education International, 2003.
[29] Phadke, A. G., and Thorp, J. S., Computer Relaying for Power Systems, 2nd Edition, Wiley Text Books, 2009.
[30] Kuo, B. C., and Golnaraghi, Farid, Automatic Control Systems, Wiley Text Books, 2009.
[31] 施有為,「電力監控系統與資訊末端設備之演進」,電機月刊,第九卷,第八期,第156頁~162頁,1999年。
[32] 郭明錫,「電力自動化的架構與通訊協定」,電機月刊,第九卷,第十一期,第151~156頁,1999年。
[33] 李俊奇、吳亞芬、沈金鐘,線性積體電路,高立圖書股份有限公司,台北,第78頁,2004年6月。
[34] Burr-Brown Prouducts from Texas Instruments Precision, Gain of 0.2 Level Translation DIFFERENCE AMPLIFIER, INA159, October, 2005.
[35] Texas Instruments Inc., TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28335, TMS320F28334, TMSF28332 Digital Signal Controllers (DSCs) Data Manual, Dallas, Texas, USA, Apirl, 2009.
[36] Texas Instruments Inc., TMS320F2806x Piccolo Microcontrollers (Rev, D), Dallas, Texas, USA, December, 2012.
[37] Texas Instruments Inc., TMS320F28030, TMS320F28031, TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28035 Piccolo Microcontrollers (Rev. J), Dallas, Texas, USA, October, 2013.
[38] 廖俊達,「數位測距電驛研製與測試」,碩士論文,國立台灣大學,台北,2005年6月。
[39] Doble公司網站 http://www.Doble.com/products/F6000.htm
[40] Gosalia, J., and Tierney, D., Tutorial on Using Comtrade Files for Relay Testing, Washington, 1998.