簡易檢索 / 詳目顯示

研究生: 邱義銘
Yi-Ming Chiu
論文名稱: 複晶矽薄膜電晶體汲極工程之研究
Study of Drain Engineering in Polycrystalline Silicon Thin-Film-Transistors
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 趙良君
Liang-chun Chao
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 80
中文關鍵詞: 複晶矽薄膜電晶體載子發射大角度離子佈植汲極
外文關鍵詞: LATID, poly-Si TFT, carriers emission
相關次數: 點閱:546下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複晶矽(polysilicon)薄膜電晶體(TFT)技術對主動式矩陣液晶顯示器而言是一種新興的關鍵技術,它提供了將主動矩陣及驅動電路整合在同一基板上的可能性。然而,傳統的自我對準型(self-aligned)的複晶矽薄膜電晶體的電特性上卻存在了幾個不欲發生的效應,包括大的關閉狀態(off-state)的電流(leakage current,漏電流),紐結效應(kink effect)和熱載子引起電性操作上的不穩定性。 這些效應與存在於汲極端與通道間的高電場有很大的關聯。因此,必須降低汲極端的電場以改善上述的現象。在本篇論文中,將分析擁有大角度離子佈植汲極結構的新式複晶矽薄膜電晶體。
    首先,製造三種擁有不同汲極結構的複晶矽薄膜電晶體,他們是:傳統型單一汲極/源極的薄膜電晶體、擁有輕摻雜汲極(Lightly-Doped-Drain, LDD)結構的薄膜電晶體以及擁有大角度離子佈植汲極(large-angle-tilt-implanted drain, LATID)結構的薄膜電晶體。接著,我們研究用不同的製程參數所形成的LDD TFTs的電特性,例如LDD離子佈植劑量及能量。由實驗的結果中,將可以確認不同LDD的製程參數與薄膜電晶體的電特性之間的關係。同樣地,我們也會討論藉由各種LATID佈植劑量、佈植能量及佈植角度所形成的薄膜電晶體的電特性。由實驗結果將發現離子佈植的劑量和能量影響LDD 和LATID薄膜電晶體的操作性能。而LATID離子佈植的角度對薄膜電晶體的操作性能更是有深刻的影響。
    最後,我們比較傳統型單一汲極/源極的薄膜電晶體、擁有輕摻雜汲極(Lightly-Doped-Drain, LDD)結構的薄膜電晶體以及擁有大角度離子佈植汲極(large-angle-tilt-implanted drain, LATID)結構的薄膜電晶體的電特性。結果顯示擁有大角度離子佈植汲極(large-angle-tilt-implanted drain, LATID)結構的薄膜電晶體比起傳統型單一汲極/源極的薄膜電晶體、擁有輕摻雜汲極(Lightly-Doped-Drain, LDD)結構的薄膜電晶體將會擁有更低的漏電流。因為它對藉由陷阱狀態所產生的載子發射機制能更有效的抑制。而且,擁有大角度離子佈植汲極(large-angle-tilt-implanted drain, LATID)結構的薄膜電晶體其衝擊游離電流(與元件使用之可靠度相關)的峰值比起傳統型單一汲極/源極的薄膜電晶體、擁有輕摻雜汲極(Lightly-Doped-Drain, LDD)結構的薄膜電晶體也會小的多。因此,擁有大角度離子佈植汲極(large-angle-tilt-implanted drain, LATID)結構的薄膜電晶體將可以達到優越的元件特性以及可靠度。


    Polycrystalline silicon (polysilicon) thin film transistor (TFT) technology is emerging as a key technology for active matrix liquid crystal displays, allowing the integration of both active matrix and driving circuitry on the same substrate. However, conventional self-aligned polysilicon TFTs present several undesired effects in the electrical characteristics, including large off-state currents (leakage), kink effect and hot carrier instabilities. These effects are related to the presence of high electric fields at the drain junction and electric field near the drain region relief is essential. In this thesis, a novel poly-Si TFTs formed by using the large-angle-tilt-implanted-drain (LATID) scheme has been analyzed.
    First, three types TFTs with different drain structure were fabricated. They are the conventional single source/drain TFTs, the Lightly-Doped-Drain (LDD) TFTs and the large-angle-tilt-implanted drain (LATID) TFT. Next, the electrical characteristics of the LDD TFTs formed with different fabrication parameters such as LDD implantation doses and implanting energies were investigated. From the results, the relation between electrical characteristics of the LDD TFTs and such process parameters has been identified. In the same ways, electrical characteristics of the LATID TFTs were also studied. The LATID TFTs are formed with various LATID doses, various LATID energies and various LATID tilt angle. It is found that the implantation dose and implantation energy affected the performance of the LDD and the LATID TFTs. The implantation tilt angle of the LATID TFTs, moreover, has a most profound influence on the performance of the LATID TFTs.
    Finally, the electrical characteristics of the conventional single source/drain TFTs, the LDD TFTs and the LATID TFTs were compared. It could be found that the LATID TFTs achieve much smaller leakage than both the conventional single source/drain TFTs and the LDD TFTs, attributable to the more effective suppression of carrier emission via trap states. Moreover, the peak impact ionization current, associated with the device reliability, of the LATID TFTs is also significantly smaller than that of the conventional TFTs and the LDD TFTs. As a result, a poly-Si TFTs with excellent device characteristics and reliability can be implemented by simply using the LATID fabrication scheme.

    Abstract (Chinese) i Abstract (English) iii Acknowledgement (Chinese) v Contents vi Table List viii Figure Captions ix Chapter 1 Introduction 1 1-1. Background 1 1-3. Description of large-angle-tilt-implanted-drain (LATID) structure 5 1-4. Motivation 6 1-5. Thesis Organization 6 Chapter 2 Device Scheme 9 Chapter 3 Results and Discussion 13 3–1 Electrical characteristics of the TFTs with LDD structure 13 3–1–1 Influence of LDD implantation dose 13 3–1–2 Influence of LDD implantation energy 14 3–1–3 Summary 15 3–2 Electrical characteristics of the TFTs with LATID structure 23 3–2–1 Influence of LATID implantation dose 23 3–2–2 Influence of LATID implantation energy 25 3–2–3 Influence of LATID implantation tilt angle 27 3–3 Comparison of electrical characteristics for three structures 51 Chapter 4 Conclusions 56 References 59 Vita 65

    [1]. Y. Matsueda, T. Ozawa, M. Kimura, T. Itoh, K. Kitwada, T. Nakazawa, and H. Ohsima, “A 6-bit-color VGA low-temperature poly-Si TFT-LCD with integrated digital data drivers,” in SID Tech. Dig., pp. 879-882, 1998.
    [2]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” in IEDM Tech. Dig., pp.157, 1989.
    [3]. 工業材料-光電特刊, Vol. 199, 2003年7月.
    [4]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “ Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, Vol. 48, pp. 845-851, 2001.
    [5]. Mark Stewart, Robert S. Howell, Leo Pires, Miltiadis K. Hatalis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED displays – technology and performance,” in IEDM Tech. Dig., pp. 871-874, 1998.
    [6]. H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., pp.38, 1992.
    [7]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313, 1995.
    [8]. A.Sato, Y. Momiyama, Y. Nara, T. Sugii, Y. Arimoto, T. Ito, “A 0.5-μm EEPROM cell using poly-Si TFT technology,” IEEE Trans. Electron Devices, Vol.40, pp. 2126, 1993.
    [9]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
    [10]. T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5, pp. 1086-1039, 1991.
    [11]. Y. Hayashi, H. Hayashi, M. Negishi and T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference, pp.266, 1998.
    [12]. N. Yamauchi, Y. Inaba and M.Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonics Tech. Lett., Vol. 5, No. 3, 1993.
    [13]. M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proc. Circuits Device Syst., Vol. 141, No. 1, 1994.
    [14]. Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, and Krishna C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, Vol. 89, pp. 602-633, 2001.
    [15]. Y. Akasaka, “ Three-Dimensional IC trends,” Proceedings of the IEEE, Vol.74, No. 12, pp. 1703-1714, 1986.
    [16]. I-W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19-22, 1995.
    [17]. W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, Vol. 33, pp. 477-481, 1986.
    [18]. M. Takabatake, J. Ohwada, Y. A. Ono, K. Ono, A. Mimura, and N. Konishi, “CMOS circuits for peripheral circuit integrated poly-Si TFT LCD fabricated at low temperature below 600 °C,” IEEE Trans. Electron Devices, Vol. 38, pp. 1303-1309, 1991.
    [19]. John Y. W. Seto, “ The electrical properties of polycrystalline silicon film,” J. Appl. Phy., Vol.46, No. 12, pp. 5247-5254, 1975.
    [20]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “ Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phy., Vol. 53, No. 2, pp. 1193-1202, 1982.
    [21]. S. D. Brotherton, J.R. Ayres, and N. D. Young, “ Characterisation of Low Temperature Poly-Si Thin Film Transistors,” Solid-State Electronics, Vol. 34, No. 7, pp. 671-679, 1991.
    [22]. I.-Wei Wu, Alan G. Lewis, Tiao-Yuan Huang, Warren B. Jackson, and Anne Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” in IEDM Tech. Dig., pp. 867-870, 1990.
    [23]. K. R. Olasupo, and M. K. Hatalis, “Leakage current mechanism in sub- micron polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 43, pp. 1218-1223, 1996.
    [24]. M. Lack, I-W. Wu, T. J. King, and A. G. Lewis, “Analysis of leakage currents in poly-silicon thin film transistors,” in IEDM Tech. Dig., pp. 385-388, 1993.
    [25]. Jerry G. Fossum, Adelmo Ortiz-conde, Hisashi Shichijo, and Sanjay K. Banerjee, “Anomalous Leakage Current in LPCVD Polysilicon MOSFET’s,” IEEE Trans. Electron Devices, Vol. 32, No. 9, pp. 1878-1884, 1985.
    [26]. M. Yazaki, S. Takenaka, and H. Ohshima, “Conduction Mechanism of Leakage Current Observed in Metal-Oxide-Semiconductor Transistors and Poly-Si Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 31, pp. 206-209, 1992.
    [27]. Bohuslav Rezek, Christoph E. Nebel, and Martin Stutzmann, “Polycrystalline silicon thin films produced by interference laser crystallization of amorphous silicon,” Jpn. J. Appl. Phys., Part 2, Vol. 38, pp. L1083-L1084, 1999.
    [28]. P. M. Smith, P. G. Carey, and T. W. Sigmon, “Excimer laser crystallization and doping of silicon films on plastic substrates,” Appl. Phys. Lett., Vol. 70, pp. 342-344, 1997.
    [29]. James S. Im, H. J. Kim, and Michael O. Thompson, “Phase transformation mechanisms involved on excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., Vol. 63, pp. 1969-1971, 1993.
    [30]. Yunosuke Kawazu, Hiroshi Kudo, Seinosuke Onari, and Toshihiro Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys. Part1, Vol. 29, pp. 2698-2704, 1990.
    [31]. K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystalline silicon thin- film transistors,” IEEE Electron Device Lett., Vol. 9, pp. 23-25, 1988.
    [32]. Byung-Hyuk Min and Jerzy Kanicki, “Electrical characteristics of new LDD poly-Si TFT structure tolerant to process misalignment,” IEEE Electron Device Lett., Vol. 20, pp. 335-337, 1999.
    [33]. Yasuyoshi Mishima and Yoshiki Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, Vol. 49, pp. 981-985, 2002.
    [34]. M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig., 1997, pp. 523-526.
    [35]. Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, “Gate-overlapped lightly doped drain poly-Si thin- film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, Vol. 45, pp. 1272-1279, 1998.
    [36]. Ted Kamins, Polycrystalline silicon for integrated circuits and displays, second edition.
    [37]. M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., Vol. 12, pp. 203-205, 1991.
    [38]. M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 44, pp. 2234-2241, 1997.
    [39]. M. Koyanagy, H. Kaneko, and S. Shimizu, “ Optimum design of n+-n– double-diffused drain MOSFET to reduce hot-carrier emission,” IEEE Trans. Electron Devices, Vol. 32, pp. 562, 1985.
    [40]. F.-C Hsu, and H. R. Grinolds, “Structure-enhanced MOSFET degradation due to hot-electron injection,” IEEE Electron Device Lett., Vol. 5, No. 3, pp. 71-74, 1984.
    [41]. J. Hui, F.-C Hsu, and J. Moll, “ A new substrate and gate current phenomenon in short-channel LDD and minimum overlap devices,” IEEE Electron Device Lett., Vol. 6, pp. 135, 1985.
    [42]. Tiao-yuan Huang, William W. Yao, Russel A. Martin, Alan G. Lewis, Mitsumasa Koyanai, and John Y. Chen, “ A novel submicron LDD transistor with inverse-T gate structure,” in IEDM Tech. Dig., pp. 742-745, 1986.
    [43]. T. Hori, and K. Kurimoto, “A new MOSFET with large-tilt-angle implanted drain (LATID) structure,” IEEE Electron Device Lett., Vol.9, No.6, pp.300-302, 1988.
    [44]. T. Hori, J. Hirase, Y. Odake, and T. Yasui, “Deep-submicrometer large-angle-tilt implanted drain (LATID) technology,” IEEE Trans. Electron Devices, vol. 39, No. 10, pp. 2312-2324, 1992.
    [45]. T. Hori, “0.25μm LATID (LArge-Tilt-angle Implanted Drain) technology for 3.3-V operation,” in IEDM Tech. Dig., pp. 777-780, 1989.
    [46]. J. Hirase, T. Hori, and Y. Odake, “LATID (Large-Angle-Tilt Implanted Drain) FETs with buried n– profile for deep-submicron ULSIs,” IEICE Trans. Electron., Vol. 77-C, No. 3, pp. 350-354, 1994.

    QR CODE