簡易檢索 / 詳目顯示

研究生: 宋瑞文
Rui-Wen Sung
論文名稱: 利用豬膀胱萃取之細胞外基質製備生物性水凝膠並研究其生物相容性
Exploring the Biocompatibility of Extracellular Matrix Hydrogel from Porcine Urinary Bladder
指導教授: 高震宇
Chen-Yu Kao
口試委員: 蔡協致
Hsieh-Chih Tsai
羅俊民
Chun-Min Lo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 再生醫學細胞外基質脫細胞水凝膠
外文關鍵詞: regenerative medicine, extracellular matrix, decellularized, hydrogel
相關次數: 點閱:447下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

再生醫學已被廣泛應用在器官的修復與疾病的治療,近來利用生物材料作為細胞支架已證實能增加細胞療法效率。生物材料來源包括天然和合成聚合物、陶瓷和複合材料。其中以細胞外基質製備的天然生物材料,與身體組織結構與成分相似度高,有較高的生物相容性,更常被應用在器官修復的用途。細胞外基質是由細胞所分泌的物質組成的三維結構,其成分是包含多種蛋白質與醣類,細胞外基質除了提供細胞生長所需的支架並能明顯地影響細胞行為,包括遷移、增值和分化,因此更是格外受到矚目。然而,細胞外基質若殘存原本的細胞將容易產生排斥的問題,因此藉由有效脫細胞方法來脫去原組織的細胞,並減少對結構與有效成分的破壞,成為此類生醫材料的最重要的課題。
本研究利用物理和化學的脫細胞方法去除豬膀胱內的細胞以獲得細胞外基質,以並分析其殘存的細胞量不致於影響免疫反應。並研究所獲得的細胞外基質有足夠的膠原蛋白可以製備水凝膠,並評估此水凝膠的生物相容性。
實驗結果顯示,豬膀胱藉由低張、高張和0.1%十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)溶液脫細胞後,每1mg的豬膀胱的dsDNA含量低於50ng,證明脫細胞對膀胱有明顯的效果。其中豬膀胱的膠原蛋白含量有700μg,明顯地高於豬的皮膚和肺臟。在比濁法動力分析可以發現細胞外基質濃度越高,相對的成膠速度也相對較快。電子顯微鏡中所觀察材料的孔洞也隨之變小。體外試驗中將HaCaT細胞加入水凝膠中並藉此評估水凝膠的毒性,實驗結果顯示,水凝膠的組別其細胞生物活性較控制組。從螢光顯微鏡及電子顯微鏡皆能觀察到細胞存在於水凝膠中,可以證明水凝膠沒有毒性。
本實驗使用的脫細胞方法成功地降低dsDNA含量並保留了其膠原蛋白含量且製備成水凝膠,,應用於細胞沒有生物毒性。後續會將水凝膠進行傷口癒合的分析,觀察對於傷口是否有癒合的作用。綜合以上的分析證明出豬膀胱有極大的潛力作為生物材料的應用,未來可以提升醫療品質並達到生物廢棄物的再利用。


Recent years, witness the intensive use of biomaterials in the field of regenerative medicine due to their unique biochemical properties. Biomaterials used in the regenerative medicine include natural, synthesized polymers, ceramics and composite materials. Extracellular matrix (ECM) is a natural material which consists of extracellular macromolecules and proteins inside a three-dimensional structure. The ECM prepared from different organs or tissues provides unique scaffolds structures and significantly affects cell behaviors. In this study, the combinative use of hypotonic, hypertonic and 0.1% SDS solution could successfully decellularize the pig bladder with less than 50ng dsDNA per mg. High collagen content was retained in the ECM with 700ug per milligram ECM dry weight. The lyophilized ECM was then used to prepare hydrogels using reported method. The turbidimetric assay indicated that ECM gels with higher concentration would lead to faster gelation rate and bigger pore sizes. The results from MTT assays showed that the hydrogels were non-toxic, with higher proliferation rate compared to that of the control group. In addition, results from DAPI and SEM pictures indicated the presence of the cells inside the hydrogels, confirming the biocompatibility of the materials.
Our research successfully decellularized pig bladder with the significant reduction in dsDNA content and high collagen retention and the hydrogels could subsequently be prepared from the retrieved decellularized ECM. In vitro experiments showed that the material was non-toxic to the cells. To get further insights into the ECM, the wound healing ability of hydrogels will be investigated in future studies. To sum up, ECM extracted from pig bladders is not only a potential candidate material in medical applications but also helps in the bio-waste recycling management.

目錄 摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 IX 壹、前言 1 貳、文獻回顧 4 2.1器官修復與再生醫學 4 2.2用於修復器官之生物材料 6 2.3探討細胞外基質以及脫細胞方法 7 2.4細胞外基質的應用 11 2.5水凝膠應用與發展 12 2.6循環經濟 16 參、實驗材料與方法 17 3.1研究設計 17 3.1.1實驗主旨 17 3.1.2實驗設計 17 3.2材料與儀器 19 3.2.1材料 19 3.2.2細胞材料 20 3.2.3儀器 20 3.3製備細胞外基質 22 3.3.1脫細胞方法 22 3.3.2凍乾和磨粉 22 3.4分析萃取後的細胞外基質 23 3.4.1 DAPI染色 23 3.4.2 dsDNA分析 23 3.4.3 collagen分析 24 3.4.4 Glycosaminoglycan分析 25 3.5製備ECM水凝膠 26 3.5.1稀釋ECM水凝膠範例 (此算式參考[106]) 26 3.5.2水凝膠表面型態分析 27 3.5.3比濁法動力分析 27 3.5.4 水凝膠吸水量測試 28 3.6體外測試 28 3.6.1細胞培養條件與培養基的配製 28 3.6.2凍存細胞的活化 29 3.6.3細胞培養基的更換 29 3.6.4細胞繼代培養 29 3.6.5細胞計數 30 3.6.6細胞凍存 30 3.6.7細胞毒性MTT分析 30 3.6.7.1 MTT分析(2D) 31 3.6.7.2 MTT分析(3D) 31 3.6.8 DAPI染色結果觀察細胞於水凝膠的生長情形 32 3.6.9 SEM觀察細胞於水凝膠的表面型態 32 肆、實驗結果 33 4.1 DAPI染色分析豬膀胱經由脫細胞後的細胞殘存 33 4.2 dsDNA分析豬膀胱經由脫細胞後的 dsDNA含量 35 4.3 GAG分析豬膀胱脫細胞前後的GAG含量 37 4.4 SEM觀察水凝膠的表面型態以及水凝膠吸水量分析 38 4.5比濁法動力學分析ECM濃度對於成膠的速度 41 4.6 collagen分析豬膀胱脫細胞前後的膠原蛋白含量 43 4.7水凝膠對於細胞的生物毒性分析(2D) 44 4.8水凝膠對於細胞的生物毒性分析(3D) 45 4.9 DAPI染色觀察細胞於水凝膠中 46 4.10 SEM觀察細胞於水凝膠中的表面型態 48 伍、討論 50 陸、結論 54 未來目標 55 參考文獻 56

1. Theocharis, A.D., et al., Extracellular matrix structure. Adv Drug Deliv Rev, 2016. 97: p. 4-27.
2. Sackett, S.D., et al., Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep, 2018. 8(1): p. 10452.
3. Spang, M.T. and K.L. Christman, Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater, 2018. 68: p. 1-14.
4. Wang, B., et al., Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. 2010. 94(4): p. 1100-1110.
5. Padma, A.M., et al., Protocols for rat uterus isolation and decellularization: applications for uterus tissue engineering and 3D cell culturing, in Decellularized Scaffolds and Organogenesis. 2017, Springer. p. 161-175.
6. Taylor, D.A., et al., Decellularized matrices in regenerative medicine. Acta Biomater, 2018. 74: p. 74-89.
7. Badylak, S.F., D.O. Freytes, and T.W.J.A.b. Gilbert, Extracellular matrix as a biological scaffold material: structure and function. 2009. 5(1): p. 1-13.
8. Agmon, G., K.L.J.C.O.i.S.S. Christman, and M. Science, Controlling stem cell behavior with decellularized extracellular matrix scaffolds. 2016. 20(4): p. 193-201.
9. Robertson, M.J., et al., Optimizing recellularization of whole decellularized heart extracellular matrix. 2014. 9(2).
10. Lynch, A.P. and M. Ahearne, Strategies for developing decellularized corneal scaffolds. Exp Eye Res, 2013. 108: p. 42-7.
11. Arenas-Herrera, J., et al., Decellularization for whole organ bioengineering. 2013. 8(1): p. 014106.
12. Hoque, J., J.J.A.a.m. Haldar, and interfaces, Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. 2017. 9(19): p. 15975-15985.
13. Sapru, S., et al., Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration - in vitro and in vivo. Int J Biol Macromol, 2019. 137: p. 545-553.
14. Parani, M., et al., Engineered nanomaterials for infection control and healing acute and chronic wounds. 2016. 8(16): p. 10049-10069.
15. Stefanov, I., et al., Multifunctional enzymatically generated hydrogels for chronic wound application. 2017. 18(5): p. 1544-1555.
16. Rockey, D.C., P.D. Bell, and J.A. Hill, Fibrosis--a common pathway to organ injury and failure. N Engl J Med, 2015. 372(12): p. 1138-49.
17. Goessling, W., T.E.J.D.m. North, and mechanisms, Repairing quite swimmingly: advances in regenerative medicine using zebrafish. 2014. 7(7): p. 769-776.
18. Stock, U.A. and J.P.J.A.r.o.m. Vacanti, Tissue engineering: current state and prospects. 2001. 52(1): p. 443-451.
19. Sun, J. and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel), 2013. 6(4): p. 1285-1309.
20. Vacanti, J.P. and R.J.T.l. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. 1999. 354: p. S32-S34.
21. Griffith, L.G. and G.J.s. Naughton, Tissue engineering--current challenges and expanding opportunities. 2002. 295(5557): p. 1009-1014.
22. Andrzejewska, A., B. Lukomska, and M.J.S.C. Janowski, Concise review: mesenchymal stem cells: from roots to boost. 2019. 37(7): p. 855-864.
23. Yin, K., S. Wang, and R.C.J.B.R. Zhao, Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. 2019. 7(1): p. 8.
24. Pawar, S.N. and K.J.J.B. Edgar, Alginate derivatization: a review of chemistry, properties and applications. 2012. 33(11): p. 3279-3305.
25. Tan, H., et al., Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. 2007. 18(10): p. 1961-1968.
26. Andrades, J.A., et al., Skeletal regeneration by mesenchymal stem cells: What else?, in Regenerative Medicine and Tissue Engineering-Cells and Biomaterials. 2011, IntechOpen.
27. Kim, B.-S. and D.J.J.T.i.b. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. 1998. 16(5): p. 224-230.
28. Gilding, D. and A.J.P. Reed, Biodegradable polymers for use in surgery—polyglycolic/poly (actic acid) homo-and copolymers: 1. 1979. 20(12): p. 1459-1464.
29. Li, S.-T.J.B., Biologic biomaterials: tissue-derived biomaterials (collagen). 2007: p. 7.1-7.23.
30. Atala, A., Engineering organs. Current Opinion in Biotechnology, 2009. 20(5): p. 575-592.
31. Hussein, K.H., et al., Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. 2016. 67: p. 766-778.
32. White, L.J., et al., The impact of sterilization upon extracellular matrix hydrogel structure and function. Journal of Immunology and Regenerative Medicine, 2018. 2: p. 11-20.
33. Ventura, R.D., A.R. Padalhin, and B.T. Lee, In-vitro and in-vivo evaluation of hemostatic potential of decellularized ECM hydrogels. Materials Letters, 2018. 232: p. 130-133.
34. Choi, J.S., et al., Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release, 2009. 139(1): p. 2-7.
35. White, L.J., et al., The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomater, 2017. 50: p. 207-219.
36. Keane, T.J., I.T. Swinehart, and S.F.J.M. Badylak, Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. 2015. 84: p. 25-34.
37. Hussein, K.H., et al., Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater Sci Eng C Mater Biol Appl, 2016. 67: p. 766-778.
38. Hussein, K.H., et al., Vascular reconstruction: A major challenge in developing a functional whole solid organ graft from decellularized organs. Acta Biomater, 2020. 103: p. 68-80.
39. Gilbert, T.W., T.L. Sellaro, and S.F.J.B. Badylak, Decellularization of tissues and organs. 2006. 27(19): p. 3675-3683.
40. Crapo, P.M., T.W. Gilbert, and S.F.J.B. Badylak, An overview of tissue and whole organ decellularization processes. 2011. 32(12): p. 3233-3243.
41. Brown, B.N., et al., Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials, 2009. 30(8): p. 1482-91.
42. Yang, B., et al., Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. 2010. 16(5): p. 1201-1211.
43. Funamoto, S., et al., The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials, 2010. 31(13): p. 3590-5.
44. Hashimoto, Y., et al., Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials, 2010. 31(14): p. 3941-8.
45. Phillips, M., E. Maor, and B.J.J.o.b.e. Rubinsky, Nonthermal irreversible electroporation for tissue decellularization. 2010. 132(9).
46. Dong, X., et al., RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. 2009. 20(11): p. 2327.
47. Prasertsung, I., et al., Development of acellular dermis from porcine skin using periodic pressurized technique. 2008. 85(1): p. 210-219.
48. Meyer, S.R., et al., Comparison of aortic valve allograft decellularization techniques in the rat. 2006. 79(2): p. 254-262.
49. Courtman, D.W., et al., Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. 1994. 28(6): p. 655-666.
50. Ott, H.C., et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. 2008. 14(2): p. 213-221.
51. Uygun, B.E., et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. 2010. 16(7): p. 814-820.
52. Du, L., et al., Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. 2011. 95(3): p. 410-414.
53. Ott, H.C., et al., Regeneration and orthotopic transplantation of a bioartificial lung. 2010. 16(8): p. 927.
54. Kasimir, M.-T., et al., Comparison of different decellularization procedures of porcine heart valves. 2003. 26(5): p. 421-427.
55. Cartmell, J.S., et al., Effect of chemical treatments on tendon cellularity and mechanical properties. 2000. 49(1): p. 134-140.
56. Rieder, E., et al., Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of Thoracic and Cardiovascular Surgery, 2004. 127(2): p. 399-405.
57. Woods, T. and P.F. Gratzer, Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials, 2005. 26(35): p. 7339-49.
58. Brown, B.N., et al., Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. 2011. 17(4): p. 411-421.
59. Montoya, C.V. and P.S.J.T.E.P.C.M. McFetridge, Preparation of ex vivo–based biomaterials using convective flow decellularization. 2009. 15(2): p. 191-200.
60. Lumpkins, S.B., N. Pierre, and P.S. McFetridge, A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater, 2008. 4(4): p. 808-16.
61. Gorschewsky, O., et al., Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. 2005. 15(6): p. 403-411.
62. Deeken, C., et al., Method of preparing a decellularized porcine tendon using tributyl phosphate. 2011. 96(2): p. 199-206.
63. Petersen, T.H., et al., Tissue-engineered lungs for in vivo implantation. 2010. 329(5991): p. 538-541.
64. Cortiella, J., et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. 2010. 16(8): p. 2565-2580.
65. Grauss, R.W., et al., Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. 2005. 27(4): p. 566-571.
66. Tudorache, I., et al., Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. 2007. 16(5): p. 567-73; discussion 574.
67. Sellaro, T.L., et al., Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. 2010. 16(3): p. 1075-1082.
68. Chen, R.N., et al., Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials, 2004. 25(13): p. 2679-86.
69. Hopkinson, A., et al., Optimization of amniotic membrane (AM) denuding for tissue engineering. 2008. 14(4): p. 371-381.
70. Rosario, D.J., et al., Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. 2008.
71. Taylor, D.A., et al., Decellularized matrices in regenerative medicine. Acta Biomaterialia, 2018. 74: p. 74-89.
72. Hoganson, D.M., et al., Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing. Journal of Biomedical Materials Research Part A, 2016. 104(7): p. 1728-1735.
73. Fong, E.L., et al., A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials, 2016. 77: p. 164-72.
74. Agmon, G. and K.L. Christman, Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci, 2016. 20(4): p. 193-201.
75. Yao, Q., et al., Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Materials Science and Engineering: C, 2019. 104: p. 109942.
76. Xing, J.-F., M.-L. Zheng, and X.-M.J.C.S.R. Duan, Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. 2015. 44(15): p. 5031-5039.
77. Singh, B. and A.J.R.A. Dhiman, Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties. 2015. 5(55): p. 44666-44678.
78. Madaghiele, M., et al., Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. 2014. 2(4): p. 153-161.
79. Xiang, J., L. Shen, and Y. Hong, Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. European Polymer Journal, 2020. 130.
80. Qin, Y.J.J.o.t.T.I., Advanced wound dressings. 2001. 92(2): p. 127-138.
81. Kujath, P. and A.J.D.Ä.I. Michelsen, Wounds–From physiology to wound dressing. 2008. 105(13): p. 239.
82. Pinho, E. and G.J.J.o.M.C.B. Soares, Functionalization of cotton cellulose for improved wound healing. 2018. 6(13): p. 1887-1898.
83. Arroyo, A.A., et al., Open‐label clinical trial comparing the clinical and economic effectiveness of using a polyurethane film surgical dressing with gauze surgical dressings in the care of post‐operative surgical wounds. 2015. 12(3): p. 285-292.
84. Vowden, K. and P.J.S. Vowden, Wound dressings: principles and practice. 2017. 35(9): p. 489-494.
85. Gupta, A., et al., The production and application of hydrogels for wound management: A review. European Polymer Journal, 2019. 111: p. 134-151.
86. Martin, F.T., et al., Hydrocolloid dressing in pediatric burns may decrease operative intervention rates. 2010. 45(3): p. 600-605.
87. Skórkowska-Telichowska, K., et al., The local treatment and available dressings designed for chronic wounds. 2013. 68(4): p. e117-e126.
88. Santamaria, N., et al., A randomised controlled trial of the effectiveness of soft silicone multi‐layered foam dressings in the prevention of sacral and heel pressure ulcers in trauma and critically ill patients: the border trial. 2015. 12(3): p. 302-308.
89. Song, E.-H., et al., Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. 2017. 79: p. 866-874.
90. Gupta, A., et al., Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels. 2016. 33(8): p. 725-734.
91. Cirillo, G., et al., Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. 2017. 90: p. 1-12.
92. Kim, J.O., et al., Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. 2008. 359(1-2): p. 79-86.
93. Anumolu, S.S., et al., Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. 2011. 32(4): p. 1204-1217.
94. Varaprasad, K., et al., Alginate-based composite materials for wound dressing application:A mini review. Carbohydr Polym, 2020. 236: p. 116025.
95. Mazzitelli, S., et al., Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater, 2011. 7(3): p. 1050-62.
96. Gin, H., et al., Lack of responsiveness to glucose of microencapsulated islets of Langerhans after three weeks' implantation in the rat—influence of the complement. 1990. 7(3): p. 341-346.
97. Shiki, A., et al., Inhibition of degranulation in mast cells attached to a hydrogel through defective microtubule tracts. Exp Cell Res, 2019. 381(2): p. 248-255.
98. Hoffman, A.S.J.A.d.d.r., Hydrogels for biomedical applications. 2012. 64: p. 18-23.
99. Hubbell, J.A.J.C.O.i.S.S. and M. Science, Synthetic biodegradable polymers for tissue engineering and drug delivery. 1998. 3(3): p. 246-251.
100. Nešović, K., et al., Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. European Polymer Journal, 2019. 121.
101. Koehler, J., F.P. Brandl, and A.M.J.E.P.J. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. 2018. 100: p. 1-11.
102. Parenteau-Bareil, R., R. Gauvin, and F.J.M. Berthod, Collagen-based biomaterials for tissue engineering applications. 2010. 3(3): p. 1863-1887.
103. Wang, J.K., et al., Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomaterialia, 2017. 63: p. 246-260.
104. Oliver, R., et al., Dermal collagen implants. 1982. 3(1): p. 38-40.
105. Arenas-Herrera, J.E., et al., Decellularization for whole organ bioengineering. Biomed Mater, 2013. 8(1): p. 014106.
106. Badylak, S.F., & Freytes, D. O. 2013: U.S.
107. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix, in Biomaterials. 2008. p. 1630-1637.
108. Strober, W., Monitoring cell growth, in Current protocols in immunology. 1997.
109. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins, in Nucleic acids research. 2007. p. 6663-6671.
110. Ventura, R.D., et al., Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2019. 104: p. 109841.
111. Balestrini, J.L., et al., Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials, 2016. 102: p. 220-30.
112. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. 2008. p. 145-156.
113. Evaluation of different decellularization protocols on the generation of pancreas-derived hydrogels, in Tissue Engineering Part C: Methods. 2018. p. 697-708.
114. Use of decellularized porcine liver for engineering humanized liver organ. Journal of Surgical Research, in Journal of Surgical Research. 2012. p. e11-e25.
115. Decellularization for whole organ bioengineering. Biomedical materials. 2013.
116. Quint, C., et al., Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci U S A, 2011. 108(22): p. 9214-9.
117. Birk, D.E., F.H.J.A.o.b. Silver, and biophysics, Collagen fibrillogenesis in vitro: comparison of types I, II, and III. 1984. 235(1): p. 178-185.
118. Freytes, D.O., et al., Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials, 2008. 29(11): p. 1630-7.
119. Salgado, A., O.P. Coutinho, and R.L.J.T.e. Reis, Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. 2004. 10(3-4): p. 465-474.

無法下載圖示 全文公開日期 2025/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE