簡易檢索 / 詳目顯示

研究生: 鮑力銘
Li-Ming Pao
論文名稱: 設計多功能除頻器使用 8 字電感與變壓器以及電感訊號干擾分析
Design a Multi-function Frequency Divider Using 8- character Inductors and Transformers, and Analysis of Inductance Signal Interference
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
黃進芳
Jhin-Fang Huang
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 170
中文關鍵詞: 除頻器8字電感訊號干擾分析
外文關鍵詞: Divider, 8-character Inductors, Analysis of Signal Interference
相關次數: 點閱:223下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技發展,對於高頻的需求與日俱增,處理高頻訊號的電路也更加重要,而其中的 VCO 和注入鎖定除頻器(ILFD)尤為重要,且能量耗損也特別的大,其中電感更是不可或缺的被動元件,所以對於性能的要求也更加嚴苛,像是更寬的工作範圍、低雜訊、低功率,或是多功能的特性,所以本篇論文提出兩篇的 ILFD以及一篇電感性能比較的設計,所有的晶片都是使用 tsmc 0.18-μm CMOS mixed-signal and RF 1P6M technology 工藝製造。
    第一部分介紹了一種 CMOS 4n 注入鎖定除頻器 (ILFD),它帶有一個除 4 環形振盪除頻器,該除頻器堆疊在具有除整數 n 的電容性的交叉耦合 LC ILFD 上。除 12 鎖定範圍為 8.2GHz 至 10.2GHz,功耗為 12.86mW,外部注入信號功率 Pinj為 0dBm。無變容器除 12 ILFD 採用寬鎖定範圍的環形振盪器 FD 追踪來自 LCILFD 輸出的輸入頻率,晶片總面積為 1.2×0.928 mm2。實驗表明,該電路也適用於具有寬鎖定範圍的÷8 和÷16 ILFD。
    第二部分介紹了一種採用 3 維的扭轉變壓器的除二除頻器(÷2ILFD)。3 維的扭轉變壓器為兩個扭轉串聯的 3 匝八邊形電感疊在一起所組成,使用 3 維扭轉耦合感應線圈的 ILFD 具有低電磁(EM)輻射水平,對接收到的 EM 雜訊不太敏感,而且尺寸較小,晶片總面積為 1.087×0.558mm2。8 字形變壓器和寄生電容組成雙共振的共振腔,ILFD 具有雙頻段鎖定範圍。在 1.3V 的電源電壓下,注入功率為0 dBm 時的第一個 ILFD 工作範圍為 5.91 GHz 至 13.2GHz。由於可調共振頻率,在高頻帶緩衝器處測量的操作範圍超寬。這證明了 3 維扭轉變壓器可用於無 EMLC-ILFD 設計的概念。
    第三部分介紹當電感器非常靠近時,寄生磁耦合對於射頻集成電路來說是一個非常困難和重要的設計挑戰。本文首先比較了三個三匝電感的射頻性能,兩個電感採用雙 8 形電感,設計的電感採用兩個三匝八角電感雙絞串聯。與另一個類似的三匝電感器相比,設計的電感器具有更高的品質因數和更小的寄生電容。 本文還模擬了密度內密度雙絞電感的表面金屬電流和電感的噪聲抑制。雙絞電感器/變壓器將產生的場局部化,雙絞電感元件減少電感基板耦合,從而實現緊湊的電路佈局。


    With the development of science and technology, the demand for high frequency
    is increasing day by day, and the circuit processing high-frequency signal is more
    important, among which the VCO and injection-locked frequency divider (ILFD) are
    particularly important. Their power consumption is particularly large, and inductors are indispensable passive components, so the performance requirements are more stringent, such as wider operating range, low noise, low power, or multi-functional features, so this theis proposes two ILFDs and an inductor performance comparison design. All chips are manufactured using tsmc 0.18-um CMOS mixed-signal and RF 1P6M
    technology process.
    The first part presents a CMOS 4n injection-locked divider (ILFD) with a divideby-4 ring divider stacked on a cross-coupled LC ILFD with a divide-by-n capacitive. The locking range of ÷12 is 8.2GHz to 10.2GHz, the power consumption is 12.86mW,
    and the external injection signal power Pinj is 0dBm. The ÷ 12 ILFD adopts ring
    oscillator FD with a wide locking range to track the input frequency from the output of LC ILFD, the total chip area is 1.2×0.928 mm2. Experiments have shown that the circuit is also suitable for ÷8 and ÷16 ILFDs with a wide lock range.
    The second part presents a divide-by-two divider (÷2ILFD) using a 3-dimensional
    twisted transformer. The 3D torsional transformer is composed of two 3-turn octagonal
    inductors that are twisted in series. The ILFD using the 3D twisted coupled induction
    coil has a low level of electromagnetic (EM) radiation and is less sensitive to the
    received EM noise. Sensitive and small in size, the total area of the chip is
    1.087×0.558mm2. The 8-shaped transformer and parasitic capacitance form a double
    resonant cavity, and the ILFD has a dual-band locking range. The ILFD operates from
    5.91 GHz to 13.2 GHz at 0 dBm injected power at a supply voltage of 1.3 V. Ultra-wide
    operating range measured at high-band buffer due to adjustable resonant frequency.
    This proves the concept that 3D torsional transformers can be used for EM-free LCILFD designs.
    Parasitic magnetic coupling is a very difficult and important design challenge for RF integrated circuits when the inductors are located very close together. This chapter
    first compares the RF performance of three three-turn inductors, two inductors use two
    8-shaped inductors in twisted series and the designed inductor uses two 3-turn octagonal inductors in twisted series. Compared with another similar 3-turn inductor, the designed inductor shows a higher quality factor and less parasitic capacitance. This chapter also simulates the surface current density in the metal traces of the twisted inductor and the noise suppression of the inductor. Twisted inductive components reduce the inductive substrate coupling, thus enabling a tight circuit layout.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 The theory of the Voltage Controlled Oscillators 6 2.1 Introduction 6 2.2 Oscillation Theory 7 2.2.1 Resonator and Negative Resistance (One port) 8 2.3 Brief description of oscillator types 14 2.3.1 LC-Tank Oscillator 14 2.3.2 Ring Oscillator 20 2.4 Overview of Passive Components 25 2.4.1 Resistors 27 2.4.2 Inductor 29 2.4.3 Capacitor 40 2.5 Design Concepts of Voltage-Controlled Oscillator 41 2.5.1 Parameters of Voltage-Controlled Oscillator 42 2.5.2 Phase Noise 44 2.5.3 Quality Factor 52 Chapter 3 Design of Injection Locked Frequency Divider 56 3.1 Introduction 56 3.2 Principle of Injection Locked Frequency Divider 58 3.3 Locking Range 61 Chapter 4 High-Division Ratio Multi-Modulus Injection-Locked Frequency Divider 64 4.1 Introduction 64 4.2 Circuit design 66 4.3 Measurement and Discussion 78 Chapter 5 Divide-by-2 Injection-Locked Frequency Dividers with 3D Twisted Transformer 89 5.1 Introduction 89 5.2 Circuit design 91 5.3 Measurement and Discussion 109 Chapter 6 Simulation Study on Noise Suppression of Twisted-Inductors 120 6.1 Introduction 120 6.2 Simulation analysis 124 Chapter 7 Conclusions 142

    [1] B. Razavi, Design of integrated circuits for optical communications. John Wiley & Sons, 2012.
    [2] N. M. Nguyen and R. G. Meyer, "Start-up and frequency stability in high-frequency oscillators," IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 810-820, 1992, doi: 10.1109/4.133172.
    [3] F. Passos, M. H. Fino, and E. Roca, "A wideband lumped-element model for arbitrarily shaped integrated inductors," in 2013 European Conference on Circuit Theory and Design (ECCTD), 8-12 Sept. 2013 2013, pp. 1-4, doi: 10.1109/ECCTD.2013.6662233.
    [4] F. Y. Yi and M. J. Yu, "Computation of 2D and 3D eddy currents of eddy current retarders," in 2010 International Conference on Electrical and Control Engineering, 25-27 June 2010 2010, pp. 3478-3481, doi: 10.1109/iCECE.2010.846.
    [5] A. Al-Abadi, A. Gamil, and F. Schatzl, "Optimum shielding design for losses and noise reduction in power transformers," in 2019 6th International Advanced Research Workshop on Transformers (ARWtr), 7-9 Oct. 2019 2019, pp. 25-30, doi: 10.23919/ARWtr.2019.8930176.
    [6] S. L. Jang, Y. K. Wu, C. C. Liu, and J. F. Huang, "A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank," IEEE Microwave and Wireless Components Letters, vol. 19, no. 12, pp. 816-818, 2009, doi: 10.1109/LMWC.2009.2033526.
    [7] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, 1998, doi: 10.1109/4.658619.
    [8] J. Mukherjee, P. Roblin, and S. Akhtar, "An analytic circuit-based model for white and flicker phase noise in LC oscillators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 7, pp. 1584-1598, 2007, doi: 10.1109/TCSI.2007.898673.
    [9] S. L. Jang, H. W. Lai, and J. Y. Sung, "Current-reused divide-by-16 injection-locked frequency divider," IEEE Microwave and Wireless Components Letters, vol. 32, no. 5, pp. 426-429, 2022, doi: 10.1109/lmwc.2021.3131710.
    [10] S. L. Jang, W. C. Lai, and M. H. Juang, "High-modulus current-reused injection-locked frequency dividers (FDs) with an odd-modulus sub-FD," presented at the 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), 2021.
    [11] W. C. Lai, S. L. Jang, P. M. Shih, H. C. Lee, and M. H. Juang, "Current-reused 6:1 injection-locked frequency divider," presented at the 2020 IEEE MTT-S International Wireless Symposium (IWS), 2020.
    [12] S. L. Jang, T. C. Kung, and C. W. Hsue, "Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic," IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 537-539, 2016, doi: 10.1109/lmwc.2016.2574835.
    [13] S. L. Jang, Y. S. Chen, C. W. Chang, and C. C. Liu, "A wide-locking range injection-locked frequency divider using linear mixer," IEEE Microwave and Wireless Components Letters, vol. 20, no. 7, pp. 390-392, 2010, doi: 10.1109/LMWC.2010.2049433.
    [14] S. M. Li, H. N. Yeh, and H. Y. Chang, "A V-band 90-nm CMOS divide-by-10 injection-locked frequency divider using current-reused topology," IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 76-78, 2018, doi: 10.1109/lmwc.2017.2779754.
    [15] A. Musa, K. Okada, and A. Matsuzawa, "Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1161-1173, 2013, doi: 10.1109/tmtt.2013.2244224.
    [16] S. L. Jang, C. T. Hsieh, T. C. Yang, and M. H. Juang, "Current reused 8:1 injection locked frequency divider using unbalanced ring oscillator frequency divider," IEEE Access, vol. 9, pp. 124921-124930, 2021, doi: 10.1109/access.2021.3111084.
    [17] S. L. Jang, W. C. Lai, G. Z. Li, and Y. W. Chen, "High even-modulus injection-locked frequency dividers," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5069-5079, 2019, doi: 10.1109/tmtt.2019.2941465.
    [18] H. C. Lee, S. L. Jang, Y. H. Fan, F. S. Chou, Y. S. Liao, and M. H. Juang, "Divide-by-2 injection-locked frequency dividers with twisted inductors," in 2020 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 26-28 Aug. 2020 2020, pp. 1-5, doi: 10.1109/iWEM49354.2020.9237415.
    [19] S. Jain, S. L. Jang, and N. T. Tchamov, "Tuned LC-resonator dual-band VCO," IEEE Microwave and Wireless Components Letters, vol. 26, no. 3, pp. 204-206, 2016, doi: 10.1109/LMWC.2016.2526690.
    [20] S. L. Jang and C. Y. Lin, "Wide-locking range class-C injection-locked frequency divider," Electronics Letters, https://doi.org/10.1049/el.2014.3115 vol. 50, no. 23, pp. 1710-1712, 2014/11/01 2014, doi: https://doi.org/10.1049/el.2014.3115.
    [21] Y. H. Chuang, S. H. Lee, R. H. Yen, S. L. Jang, J. F. Lee, and M. H. Juang, "A wide locking range and low voltage CMOS direct injection-locked frequency divider," IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 299-301, 2006, doi: 10.1109/lmwc.2006.873489.
    [22] S. L. Jang, S. H. Huang, C. F. Lee, and M. H. Juang, "LC-tank colpitts injection-locked frequency divider with record locking range," IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, pp. 560-562, 2008, doi: 10.1109/lmwc.2008.2001023.
    [23] S. L. Jang, M. H. Suchen, and C. F. Lee, "Colpitts injection-locked frequency divider implemented with a 3-D helical transformer," IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 410-412, 2008, doi: 10.1109/lmwc.2008.922671.
    [24] S. L. Jang, F. H. Chen, and J. F. Huang, "A transformer-coupled LC-tank injection locked frequency divider," Microwave and Optical Technology Letters, vol. 50, no. 3, pp. 592-595, 2008, doi: 10.1002/mop.23150.
    [25] S. L. Jang, Y. J. Chen, C. H. Fang, and W. C. Lai, "Enhanced locking range technique for frequency divider using dual‐resonance RLC resonator," Electronics Letters, vol. 51, no. 23, pp. 1888-1889, 2015, doi: 10.1049/el.2015.2411.
    [26] V. N. R. Vanukuru, "High-Q inductors utilizing thick metals and dense-tapered spirals," IEEE Transactions on Electron Devices, vol. 62, no. 9, pp. 3095-3099, 2015, doi: 10.1109/TED.2015.2458772.
    [27] P. Martin, R. Horn, and K. B. Atar, "A multi-turn twisted inductor for on-chip cross-talk reduction," in 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), 16-18 Nov. 2016 2016, pp. 1-5, doi: 10.1109/ICSEE.2016.7806138.
    [28] N. M. Neihart, D. J. Allstot, M. Miller, and P. Rakers, "Twisted transformers for low coupling RF and mixed signal applications," in 2009 IEEE International Symposium on Circuits and Systems, 24-27 May 2009 2009, pp. 429-432, doi: 10.1109/ISCAS.2009.5117777.
    [29] A. Mahmoud, L. Fanori, T. Mattsson, P. Caputa, and P. Andreani, "A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process," Analog Integrated Circuits and Signal Processing, vol. 88, no. 3, pp. 391-399, 2016, doi: 10.1007/s10470-016-0759-4.
    [30] H. C. Lee, S. L. Jang, H. W. Liu, and L. Chen, "Divide‐by‐2 injection‐locked frequency divider exploiting an 8‐shaped inductor," Microwave and Optical Technology Letters, vol. 63, 04/01 2021, doi: 10.1002/mop.32673.
    [31] A. Poon, A. Chang, H. Samavati, and S. S. Wong, "Reduction of inductive crosstalk using quadrupole inductors," IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, 2009, doi: 10.1109/jssc.2009.2020525.
    [32] T. H. Huang, S. F. Yang, and S. T. Lin, "Characterization of a planar honeycomb-based inductor on crosstalk/EMI suppression," IEEE Transactions on Electromagnetic Compatibility, vol. 61, no. 2, pp. 504-511, 2019, doi: 10.1109/temc.2018.2828613.
    [33] B. E. Seow, S. T. Lin, T. H. Huang, and H. R. Chuang, "Injection pulling mitigation in CMOS voltage-controlled oscillator using a novel honeycomb-shaped planar inductor," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 6-10, 2019, doi: 10.1109/tcsii.2018.2826138.
    [34] S. Bronckers, G. Vandersteen, L. De Locht, M. Libois, G. Van der Plas, and Y. Rolain, "Experimental analysis of the coupling mechanisms between a 4 GHz PPA and a 5–7 GHz LC-VCO," IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 8, pp. 2706-2713, 2009, doi: 10.1109/tim.2009.2015705.

    QR CODE