簡易檢索 / 詳目顯示

研究生: 郭庭榜
Ting-pang Kuo
論文名稱: 具相位補償之寬頻帶放大陣列天線
Wideband Amplifying Array with Phase Compensation
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 鄭士康
Shyh-Kang Jeng
陳士元
Shih-Yuan Chen
楊成發
Chang-Fa Yang
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 放大陣列空間功率結合串聯式饋入網路可調式反射式相移器
外文關鍵詞: amplifying array, spatial power combining, series feed network, tunable reflection phase shifter
相關次數: 點閱:360下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款放大陣列之創新寬頻帶設計。其陣列架構採用串聯饋入形式,並於傳輸路徑中引入增益放大器及可調式相移器,俾利補償饋入網路之振幅損失及相位偏移,使系統達到可寬頻操作之目的;其組成元件包含寬頻帶二路及三路邊緣耦合器、由 Lange 耦合器所實現之可調式反射式相移器、增益放大器、以及平面準八木天線。
    將上述元件組合為寬頻帶放大陣列,經量測驗證,其實驗結果與理論值及數值模擬皆相吻合,其主波束於 50% 之比例頻寬內,可維持固定之端射輻射,故順利實現寬頻帶空間功率結合之研究目的。


    A novel wideband amplifying array with phase compensation scheme is proposed in this thesis. The array adopts a series feed network with additional gain amplifiers and tunable phase shifters for amplitude and phase compensating making the proposed arrays suitable for wideband operation. The components in this amplifying array include 2-way/3-way edge couplers, tunable phase shifters, gain amplifiers, and planar quasi-Yagi antennas.
    By a direct integration of the foregoing components, the proposed amplifying array experimentally demonstrates a wide operation bandwidth of 50 %, with the mainbeam fixed at the broadside direction. The measured antenna gains agree well with the theoretical values. This amplifying array successfully provides a wideband solution for spatial power combining.

    摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文組織架構 2 第二章 相位天線陣列概論 3 2.1 前言 3 2.2 相位天線陣列之饋入網路 3 2.2.1 並聯式饋入網路 3 2.2.2 串聯式饋入網路 4 2.2.3 空間饋入網路 5 2.3 放大陣列天線架構 5 2.4 結語 7 第三章 寬頻帶放大天線陣列之組成元件 13 3.1 前言 13 3.2 耦合線耦合器 13 3.2.1 耦合線耦合器簡介 13 3.2.2 邊緣耦合方向耦合器之設計 14 3.2.3 邊緣耦合三向耦合器之設計 15 3.2.4 Lange耦合器之設計 16 3.3 可調式反射式相移器 17 3.3.1 反射式相移器之操作原理 17 3.3.2 可調式反射式相移器之設計 18 3.4 增益放大器 19 3.5 準八木天線之設計 20 3.6 結語 21 第四章 具相位補償之寬頻帶放大天線陣列 44 4.1 前言 44 4.2 設計原理 44 4.3 系統架構與電路響應 46 4.4 量測結果 47 4.5 結語 48 第五章 結論 61 5.1 總結 61 5.2 效能討論 61 參考文獻 62

    [1] W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, 2nd Ed. New York: Wiley, 1998.
    [2] H. Wang, D. G. Fang, and X. G. Chen, “A compact single layer monopulse microstrip antenna array,” IEEE Trans. Antennas Propagt., vol. 54, no. 2, pp. 503-509, Feb. 2006.
    [3] W. –W. Wu, J. –X Yin and N.-C. Yuan, “Design of an efficient X-Band waveguide-fed Microstrip patch array,” IEEE Trans. Antennas Propagt., vol. 55, no. 7, pp. 1933-1939, July. 2007.
    [4] Y. Qian and T. Itoh, “Progress in active integrated antennas and their applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 1891–1900, Nov. 1998.
    [5] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 937–944, Mar. 2002.
    [6] C. Y. Hang, W. R. Deal, Y. Qian, and T. Itoh, “High-efficiency push–pull power amplifier integrated with quasi-Yagi antenna,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1155–1161, Jun. 2001.
    [7] Y. Chung and T. Itoh, “AlGaN/GaN HEFT power amplifier integrated with microstrip antenna for RF front-end applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 653–659, Feb. 2003.
    [8] J. A. Navarro and K. Chang, Integrated Active Antennas and Spatial Power Combining. New York: Wiley, 1996.
    [9] M. Belaid, J.-J. Laurin, and K. Wu, “Integrated active antenna array using unidirectional dielectric radiators,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 10, pp. 1628–1634, Oct. 2000.
    [10] C. Krnfelt, P. Hallbjrner, H. Zirath, and A. Alping, “High gain active microstrip antenna for 60 GHz WLAN/WPAN applications,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2593–2603, Jun. 2006.
    [11] Y. Qin, S. Gao, and A. Sambell, “Broadband high-efficiency circularly polarized active antenna and array for RF front-end application,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 2910–2916, July. 2006.
    [12] W. R. Deal, N. Kaneda, J. Sor, Y. Qian, and T. Itoh, “A new quasi-Yagi antenna for planar active antenna arrays,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 910–918, June 2000.
    [13] C. H. Tsai, Y. A. Yang, S. J. Chung, and K. Chang, “A novel amplifying antenna array using patch-antenna couplers-design and measurement,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 8, pp. 1919–1926, Aug. 2002.
    [14] L. Chiu, T. Y. Yum, C. H. K. Chin, Q. Xue, and C. H. Chan, “High-efficiency class-B push-pull amplifying array for microwave transmitting front end,” IEE Proceedings on Microwaves, Antennas and Propagation, vol. 153, no. 1, pp. 25-28, Feb. 2006.
    [15] R. K. Mongia, I. J. Bahl, P. Bhartia and J. Hong, RF and Microwave Coupled-Line Circuits, 2nd ed. Norwood, MA: Artech House, 2007.
    [16] Lange, J., “Interdigital Stripline Quadrature Hybrid,” IEEE Trans. Microwave Theory Tech., vol. 17, no. 12, pp. 1150-1151, Dec. 1969.
    [17] Presser, A., “Interdigitated Microstrip Coupler Design,” IEEE Trans. Microwave Theory Tech., vol. 26, no. 10, pp. 801-805, Oct. 1978.
    [18] Ou, W. P., “Design Equations for an Interdigitated Directional Coupler,” IEEE Trans. Microwave Theory Tech., vol. 23, no. 2, pp. 253-255, Feb. 1975.
    [19] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
    [20] G. Guillermo, Microwave Transistor Amplifier Analysis and Design, 2nd Ed., Prentice Hall.
    [21] C. A. Balanis, Antenna Theory Analysis And Design, 3nd Ed. New York: Wiley, 1997.

    QR CODE