簡易檢索 / 詳目顯示

研究生: 張修誠
Hsiu-Chen Chang
論文名稱: 薄膜電晶體於主動式有機發光二極體之 新式電流及電壓編程畫素電路設計
Novel Voltage and Current Programming Pixel Circuit Designs Using Poly-Si and a-Si TFTs for AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 顏文正
Vincent. Yen
彭冠臻
DZ. Peng
李志堅
C. C .Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 120
中文關鍵詞: 畫素電路設計主動式有機發光二極體複晶矽薄膜電晶體非晶矽薄膜電晶體
外文關鍵詞: a-Si TFT
相關次數: 點閱:373下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平面顯示器具有輕、薄、低功耗、廣視角及全彩化之特點,因此在應用上都具有相當大的潛力。在眾多不同種類的平面顯示器中,有機電激發光二極體顯示器因為具備有高亮度、視角廣、體積薄、省電、自發光..等優點,所以將會有大量的焦點集中在有機電激發光二極體顯示器上。
    在本論文中,我們探討以低溫多晶矽薄膜電晶體(LTPS-TFTs)以及非晶矽薄膜電晶體(a-Si TFTs)驅動之主動有機發光二極體(AMOLEDs)電壓及電流補償畫素電路。在電壓驅動化速電路方面,相較於非晶矽薄膜電晶體,低溫多晶矽薄膜電晶體(LTPS-TFTs)擁有較好的電流驅動能力及較佳的可靠度,較小的臨界電壓飄移,並且可以用來整合畫素電路及週邊的驅動電路於同一塊玻璃基板上,但是由於LTPS-TFT製程的關係,導致LTPS-TFT產生特性上的差異,因此藉由本篇論文提出了新型的驅動電路來補償臨界電壓的差異、IR-Drop的問題。另一方面,相較於LTPS-TFTs,非晶矽薄膜電晶體(a-Si TFTs)在實際產業界應用上仍具有高良率、製程便利性等等優勢,縱使它有可靠度的問題,但仍廣泛被應用在平面顯示技術上。故本論文提出了一個以LTPS-TFTs為其驅動元件之電壓驅動畫素電路,以及一個以a-TFTs為其驅動元件之電流驅動畫素電路。
    首先,在第二章之電壓驅動電路方面,本論文先對傳統畫素驅動電路(2T1C)進行模擬與結果討論,根據模擬結果,傳統驅動電路容易受到不同元件特性的影響,造成傳統畫素驅動電路之電流的不穩定。為了克服傳統驅動電路的不穩定性,因此提出了一個電壓驅動之主動式有機電激發光二極體的3T1C補償電路,並經過兩次改良及修正此3T1C畫素電路,提出一個新式5T1C畫素電路。3T1C驅動電路為原始的設計,結果,有激電機發光二極體在臨界電壓變異0.6 V的平均電流錯誤率為1.41%,對於Power line之IR-Drop達到1V的影響維持在15%以下,但是由於設計的失誤,並無法在主動式面板驅動。經由修改提出之第二個畫素電路為5T1C驅動電路,有激電機發光二極體在臨界電壓變異VTH = ± 0.3 V的平均電流錯誤率為1.67%,對於Power line之IR-Drop 1V的影響仍維持在15%以下,雖然開口率有所下降,但已可以符合主動式面板驅動的要求,但由於已經有類似結構出現在相關期刊當中,故再修改成一個新式5T1C驅動電路,有激電機發光二極體在臨界電壓變異VTH = ± 0.3 V的平均電流錯誤率為1.07%,對於Power line之IR-Drop 1V的影響可以壓低在2%以下,算是相當大的突破。
    在第三章之電流驅動電路方面,我們探討了電流複製式驅動電路以及電流鏡式驅動電路,並提出一個新式電流驅動電路,利用Power line 電壓調變來提升電流線性程度,有激電機發光二極體的平均電流錯誤率為2.88%,此數據是在臨界電壓變異 VTH = -1~+4 V下所達到之效果,對於Power line之IR-Drop 3 V的影響可以壓低在3%以下,OLED劣化對於驅動電流的影響也相當小。
    總而言之,本論文中所提出的數個畫素驅動電路可有效補償低溫多晶矽薄膜電晶體以及非晶矽薄膜電晶體所造成之元件特性的差異,同時明顯的提升有激電機發光二極體之電流的均勻性,對於未來主動式有機電激發光二極體應用極具潛力。


    Organic Light Emitting Diode (OLED) with fast response, high brightness and high contrast plays an important role gradually in the further market of flat penal display (FPD).
    In order to enhance the image quality of AMOLEDs further, the different driving methods have been compared and evaluated. Analog driving circuits can be divided into current programming circuits and voltage programming circuits. Current programming circuits can compensate both of the threshold voltage and mobility variation. Moreover, due to amorphous silicon TFTs reliability issue under the gate bias stress, current programming method is more suitable for wide range threshold voltage variation devices because of its self-compensation function. However, they have the limitation of the programming time issue. The data driver IC also needs more complicated design. Voltage programming circuits show great potential for high resolution and low cost applications in the future because of the simple structure.
    This thesis demonstrates two pixel circuits using LTPS-TFT TFTs and a-Si TFTs for AMOLED.
    In chapter two, we introduced the conventional 2T1C pixel circuit. The experimental results of conventional pixel design (2T1C) demonstrate the influence caused by the threshold voltage variation of LTPS-TFTs and the power line IR voltage drop effect. As a result, the different current flow through OLED would result in the non-uniform brightness across the panel.
    At first, conventional 2T1C circuit is simulated and discussed. Simulation results show that conventional 2T1C pixel circuit has high non-uniformity due to the various characteristics of TFTs. The average error rate of the OLED current is up to 37.8 %.
    In order to overcome the non-uniformity problem of conventional 2T1C circuit, B. S. Lin proposed a 3T1C voltage programming AMOLED pixel design. But for conventional row-by-row driving, this pixel circuit cannot conform with AM technique. As the above reason, we modified the 3T1C pixel circuit into two 5T1C pixel circuits. The simulation result shows the average error rate of the OLED current is about 1.67 % in the first 5T1C modified pixel circuit. Apparently, the OLED current is independent of the variation of threshold voltage. In addition, the degradation rate of the output current while Vdd drop of 1 V is improved to about 15 %, while it is about 80% or even more in the conventional p-type 2T1C pixel circuit. In order to improve the degradation rate of the first modified 5T1C pixel circuit, the second modified 5T1C pixel circuit is proposed. It shows that the average error rate of the OLED current is only 1.07 % in the second modified 5T1C pixel circuit. Apparently, the OLED current is independent of the variation of threshold voltage. In addition, the degradation rate of the output current while Vdd drop of 1 V is improved to about 2.5 %.
    In chapter three, we introduced the current copy type, current mirror type and proposed 5T1C current copy type pixel circuits. We used a variable power line Vdd design in our pixel circuit to control the ΔVD_DTFT and decrease the IOLED deviation caused by capacitance coupling effect and improve the output current linearity. The average IOLED error rate is about 2.88% in a very wide range of threshold voltage variation (VTH = 5 V, -1~+4 V), while it is about 30–40% in the conventional a-Si 2T1C voltage programming pixel in a very small range of threshold voltage variation(VTH = ± 0.3 V). The result shows that because of the n-type DTFT design, the proposed pixel circuit is nearly independent of the I-R voltage (<3%). The IOLED is independent of OLED degradation because when the anode voltage shift by 0.33V, the IOLED is nearly the same.
    Therefore, these proposed pixel circuits can all successfully compensate for the threshold voltage variation of LTPS and a-Si DTFTs and the IR drop on the power lines. So these proposed pixel circuits can improve the current non-uniformity for AMOLED compared with conventional pixel circuit. Therefore, they could be the promising candidates for the AMOLED panel application in the future.

    Chapter 1 1 Introduction 1 1.1 Introduction of OLED 1 1.1.1 The history of OLED material and applications 1 1.1.2 The basic OLED structure 5 1.1.3 OLED displays versus LCDs 6 1.2 PM & AM driving methods 8 1.2.1Passive-matrix driving method 8 1.2.2 Active-matrix driving method 11 1.3 AMOLED Emission Structure 14 1.3.1 Bottom emission structure 14 1.3.2 Top emission structure 14 1.4 Motivation 17 1.5 Thesis Organization 19 Chapter 2 20 AMOLED voltage programming method and proposed pixel circuit 20 2.1 Compensating methods for AMOLED 20 2.2 Conventional 2T1C pixel circuit 22 2.2.1 Conventional n-type 2T1C voltage programming pixel circuit 22 2.2.2 Conventional p-type 2T1C voltage programming pixel circuit 25 2.3.1 Diode-connected pixel circuit using PMOS driving TFT 28 2.3.2 Diode-connected compensation II 30 2.4 AIM-SPICE and Poly-Si TFT Model 32 2.4.1 AIM-SPICE Simulation 32 2.4.2 Poly-Si TFT Manufacturing Process 32 2.4.3 Poly-Si TFT Model in AIM-SPICE 35 2.4.4 Conventional 2T1C Simulation and Experimental Results 36 2.5 Proposed Voltage Programming Pixel Circuit 45 2.5.1 Introduction 45 2.5.2 3T1C Voltage Programming Pixel Circuit 47 2.5.3 5T1C Voltage Programming Pixel Circuit 51 2.5.4 Modified 5T1C Voltage Programming Pixel Circuit 61 Chapter 3 72 AMOLED current programming method and proposed pixel circuit 72 3.1 Current programming method 72 3.2 Different current programming methods 74 3.2.1 Current copy type pixel circuit 74 3.2.2 Current mirror type pixel circuit (p-type) 79 3.3 a-Si TFT Model and Mechanisms 83 3.3.1 a-Si TFT Model in AIM-SPICE 83 3.3.2 a-Si Threshold Voltage Instabilities 84 3.4 Proposed 5T1C current copy type pixel circuit 90 3.4.1 5T1C current copy type programming pixel circuit 90 3.4.2 Dynamic behavior & simulation results and discussions 94 3.4.3 Conclusion 105 Chapter 4 106 Conclusion and Future Work 106 4.1 Conclusion 106 4.2 Future work 108

    [1.1] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., vol. 38, 1963, pp. 2042~3043.
    [1.2] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes, ” Appl. Phys. Lett., vol.51, 1987, pp. 913-915.
    [1.3] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10.
    [1.4] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318
    [1.5] G. Gu, P. E. Burrows, S. Venkatesh, and S. R. Forrest, Opt. Lett. 22, 1997, pp. 172.
    [1.6] S. A, Vanslyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 878 (1996).
    [1.7] M. fujihira, L.-M. Do, A. Koike, E,-M. Han, Appl. Phys. Lett. 68,1787 (1996).
    [1.8] D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung, “Improved efficiency by a graded emissive region in organic light-emitting diodes,” Appl. Phys. Lett., vol. 80, pp. 3641–3643, 2002.
    [1.9] G. Gu and S. R. Forest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Topics Quantum Electron., vol. 4, pp. 83–99, Jan. 1998.
    [1.10] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
    [1.11] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., 1997, vol. 28, pp. 1073-1076.
    [1.12] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [1.13] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005.
    [1.14] R. M. A. Dawson, M.G. Kane, Z. Shen, D. A. Furst, S. Connor, J. Hsu, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang and S. Van Slyke, F. Chen, J. Shi, J. C. Sturm, M. H. Lu, “Active matrix organic light emitting diode pixel design using polysilicon thin film transistors,” IEEE Lasers and Electro-Optics Society Annual Meeting, 1998, pp.128-129.
    [1.15] S. H. Ju, S. H. Yu, J. H. Kwon, H. D. Kim, B. H. Kim, S. C. Kim, H. K. Chung, M. S. Weaver, M. H. Lu, R. C. Kwong, M. Hack, and J. J. Brown, “High performance 2.2”QCIF full color AMOLED displays based on electro-phosphorescence,” in SID Tech. Dig., 2002, pp. 1096-1099.
    [1.16] X. M. Yu, H. J. Peng, X. L. Zhu, J. X. Sun, M. Wong, H. S. Kwok, “Pure Aluminum as the Anode in Top Emission OLED Fabrication Process”, The 12th International Display Workshops in conjunction with Asia Display 2005 (IDW/AD’05), Dec, 2005, pp. 737-740.
    [1.17] K. Mameno, S Matsumoto, R. Nishikawa, T. Sasatani, K. Suzuki, T. Yamaguchi, K. Yoneda, Y. Hamada and N. Saito, Proceedings of IDW’03, p.267, Dec. 3-5, 2003, Fukuoka, Japan.
    [1.18] S. J. Bae, H. S. Lee, J. Y. Lee, J. Y. Park, and C.W. Han, “A novel pixel design for an active matrix organic light emitting diode display,” in Proc. IDRC, 2000, pp. 358–361.
    [1.19] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” in SID Tech. Dig., 2004, pp. 260–263.
    [1.20]Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208.
    [1.21] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [1.22] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., vol. 25, no. 11, Nov 2004, pp. 728–730.
    [2.1] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp.690–692.
    [2.2] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, Sep. 2003, pp. 215–222.
    [2.3] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, Nov. 2000, pp. 590–592.
    [2.4] J. Goh, J. Jang, K. Cho, and C. Kim, “A new a-Si:H thin-film transistor pixel circuits for active matrix organic light-emitting diodes, ” IEEE Electron Device. Lett., vol. 24, no. 9, Sep. 2003, pp. 583–585.
    [2.5] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [2.6] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes fora-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, Dec. 2005, pp.267–277.
    [2.7] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [2.8] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.
    [2.9] Palumbo G, Pennisi M. “AMOLED pixel circuits based on poly-Si TFTs: a comparison. Integration-VLSI journal 2008;41(3):439-46
    [2.10] G. Gu and S.R. Forrest, “Design of Flat-Panel Displays Based on Organic Light Emitting Devices,” IEEE J. Sel. Topics Qun. Electronics, Vol. 4, pp. 83, 1998.
    [2.11] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura and T. Urabe, “A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC),” SID 01 DIGEST, pp.384-386, 2001.
    [2.12] A. Giraldo, M. J. Childs, D. Fish, M. T. Johnson, M. Klein, H. Lifka, W. Oepts, W. A. Steer, and N. D. Young, “Optical feedback in active matrix polymer OLED displays,” in IEEE LEOS 16th Annu. Meeting, 2003, vol. 2, pp. 529–530.
    [2.13] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka, O. Gielkens, and W. Oepts, “Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies,” in SID Tech. Dig., 2005, pp. 1340–1343.
    [2.14] D. A. Torres, P. F. Lister, and P. Newbury, “LUT-based compensation model for OLED degradation,” J. Soc. Inf. Display, vol. 13, no. 5, pp. 435–441, May 2005.
    [2.15] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for
    active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp.
    897–899, Dec. 2005.
    [2.16] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
    [2.17] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., vol. 3, no. 1, pp. 36–39, Mar. 2007.
    [2.18] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED
    Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,”
    IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690-692, October 2004
    [2.19] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728–730, Nov. 2004.
    [2.20] S. H. Jung, W, J, Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690-692, Oct. 2004.
    [2.21] J. C. Goh, J. Jang, K. S. Cho, and C. K. Kim, “A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE Electron Device Lett., vol. 24, no. 9, Sept. 2003, pp. 583–585.
    [2.22] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, IEDM Tech. Dig. (1998) p. 871–874.
    [2.23]M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, no. 12, pp. 2282–2288, Dec. 1999.
    [2.24]R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [2.25]T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-si thin film transistors,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 457–459, Jul. 2003.
    [2.26]S. J. Bae, H. S. Lee, J. Y. Lee, J. Y. Park, and C.W. Han, “A novel pixel design for an active matrix organic light emitting diode display,” in Proc. IDRC, 2000, pp. 358–361.
    [2.27]C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318.
    [2.28]Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 52, pp. 1123–1131, June 2005.
    [2.29]J. C. Goh, H. J. Chung, and J. Jang, “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Electron Device Lett., vol. 23, no. 9, pp. 544–546, Sep. 2002.
    [2.30]Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, pp. 1199–1208, 2001.
    [2.31]Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728–730, Nov. 2004.
    [2.32]S. H. Jung, H. S. Shin, J. H. Lee and M. K. Han, “An AMOLED Pixel for the VT Compensation of TFT and a p-Type LTPS Shift Register by Employing 1 Phase Clock Signal,” in SID Tech. Dig., 2005, pp.300–303.
    [3.1] Y. He, R. Hottori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, pp. 590–592, Nov. 2000.
    [3.2] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “Anewcurrent scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280–282, May 2004.
    [3.3] Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 52, pp. 1123–1131, June 2005.
    [3.4] R. M. A. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [3.5] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280–282, May 2004.
    [3.6] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, and T. Urabe, “A 13.0-inch AMOLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in Proc. SID Tech. Dig., 2001, pp. 384–387.
    [3.7] S. J. Ashtiani, P. Servati, D. Striakhilev, and A. Nathan, “A 3-TFT current programmed pixel circuit for AMOLEDs,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1514–1518, Jul. 2005.
    [3.8] Y. C. Lin and H. P. D. Shieh, “A Novel Current Memory Circuit for AMOLEDs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 6, JUNE 2004
    [3.9] ’ M. J. Powell, Appl. Phys. Lett. 43, 597 (1983).
    [3.10]‘C. van Berkel and M. J. Powell, Appl. Phys. Lett. 51, 1094 (1987).
    [3.11]‘M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, Appl. Phys. Lett. 51, 1242 (1987).
    [3.12]M. J. Powell, C. van Berkel, and J. R. Hughes, Appl. Phys. Lett. 54, 1323 (1989).
    [3.13]M. J. Powell, I. D. French, and J. R. Hughes, J. Non-Cryst. Solids 114, 642 (1989).
    [3.14] S. C. Deane, M. J. Powell, J. R. Hughes, I. D. French, and W. I. Milne, Appl. Phys. Lett. 57, 1416 (1990).
    [3.15]‘M. J. Powell, S. C. Deane, I. D. French, J. R. Hughes, and W. I. Milne, Philos. Mag. B 63, 325 ( 1991).
    [3.16] D. Vallancourt and S. J. Daubert, “Applications of current-copier circuits,” in AnalogIC Design: The Current Mode Approach, C. Toumazou, F. Lidgey, and D. J. Haigh, Eds. Stevenage, U.K.: Peregrinus, 1990, pp. 515–534.
    [3.17] X, Guo and S. R. P. Silva, “A Simple and Effective Approach to Improve the Output Linearity of Switched-Current AMOLED Pixel Circuitry,” IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 10, OCTOBER 2007
    [3.18] S. J. Ashtiani, P, Servati, D, Striakhilev, and A, Nathan, A 3-TFT Current-Programmed Pixel Circuit for AMOLEDs,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY 2005

    無法下載圖示 全文公開日期 2014/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE