簡易檢索 / 詳目顯示

研究生: 嚴承鈞
CHENG-JUN YAN
論文名稱: 鐵人三項選手於自行車與跑步專項最大能力評估 暨動作肌肉分期分析
Maximum Capacity Assessment for Triathletes in Cycling and Running and Analyzing Muscle During Different Stages
指導教授: 許維君
Wei-Chun Hsu
口試委員: 許維君
Wei-Chun Hsu
白孟宜
Meng-Yi Bai
林儀佳
Yi-Jia Lin
Iñigo Mujika
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 84
中文關鍵詞: 鐵人三項運動心肺測試動作肌電分析肌肉血氧濃度性別差異
外文關鍵詞: Triathlon, Cardiopulmonary exercise test, Electromyography analysis, Muscle oxygen saturation, Gender differences
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討鐵人三項選手在自行車與跑步的運動心肺測試及過程中的動作肌電分析。為了達成此目標,招募了35名具備一定訓練背景的鐵人三項選手,本研究的實驗方法包括自行車和跑步兩部分,在測試過程中,運用漸進負荷運動測驗來測量研究參與者的最大運動能力,在自行車測試中,選手需在固定功率自行車上進行漸進負荷測試,直至達到其最大能力。同樣地,在跑步測試中,選手需在跑步機上進行逐漸增加速度的測試,直至達到最大能力。並詳細記錄各階段的攝氧量、最大攝氧量、心率、肌肉血氧濃度、血乳酸濃度及肌肉電訊號等多項生理指標的變化。統計分析以獨立樣本t檢定來比較研究參與者在不同階段狀態下的性別參數差異,以及成對樣本t檢定來比較研究參與者在暖身階段下與最大能力階段下差異。研究結果顯示,鐵人三項選手在自行車與跑步中的運動表現存在顯著差異,並且選手在不同運動階段的肌肉活化程度也有明顯差異。


    The purpose of this study is to investigate the cardiopulmonary exercise test and muscle activity electromyography analysis during cycling and running in triathletes. To achieve this goal, 35 triathletes with a certain training background were recruited. The experimental method of this study includes two parts: cycling and running. During the testing process, a progressive exercise test was used to measure the maximum exercise capacity of the participants. In the cycling test, the athletes performed a progressive load test on a fixed-power bike until they reached their maximum capacity. Similarly, in the running test, the athletes performed a gradually increasing speed test on a treadmill until they reached their maximum capacity. Various physiological indicators, such as oxygen uptake , maximum oxygen uptake , heart rate , muscle oxygen saturation , blood lactate concentration , and electromyography, were recorded in detail at each stage. Statistical analysis was performed using an independent samples t-test to compare gender parameter differences under different stages and conditions, and a paired sample t-test to compare the differences between the warm-up stage and the maximum capacity stage. The results showed that there were significant differences in the performance of triathletes during cycling and running, and the degree of muscle activation varied significantly at different stages of exercise.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 IX 第一章、緒論 1 1.1 前言與研究目的 1 1.2 研究假設 2 第二章、文獻回顧 3 2.1 運動能力評估測試 3 2.1.1 運動最大能力評估測試 3 2.1.2 自行車最大能力測試與跑步最大能力測試 5 2.2 科學化生理數值監測 7 2.2.1 外在負荷 7 2.2.2 內在負荷 7 2.3 生理指標之監測 8 2.3.1 最大攝氧量 8 2.3.2 心率 9 2.3.3 肌肉血氧飽和度 10 2.3.4 血乳酸 11 2.4 其他可量測量化之運動數據 12 2.4.1 功率 12 2.4.2 運動自覺量表 12 2.4.3 肌肉電訊號 13 2.4.4 加速規 14 第三章、實驗方法與設計 15 3.1 研究參與者招募 15 3.2 實驗設備與參數說明 15 3.2.1 定功率自行車 15 3.2.2 跑步機 16 3.2.3 自行車功率量測平台 16 3.2.4 核心溫度監測儀 17 3.2.5 心率監測儀 17 3.2.6 肌肉血氧濃度監測儀 18 3.2.7 運動自覺量表 19 3.2.8 無線肌電感測儀 20 3.2.9 心肺功能檢測系統 21 3.2.10 掌上型血乳酸測定器 22 3.3 實驗流程說明 23 3.3.1 共同前置項目 23 3.3.2 自行車最大能力測驗 25 3.3.3 跑步最大能力測試 26 3.3.4 功能閾值功率測試 27 第四章、結果與討論 28 4.1 時域定義 28 4.2 部分方法函數 28 4.3 功率與速度參數 29 4.4 心率參數 30 4.5 呼吸參數 32 4.5.1 氧氣攝取量 32 4.5.2 二氧化碳產量 34 4.5.3 通氣量 36 4.5.4 呼吸交換率 37 4.5.5 呼吸頻率 38 4.6 肌肉血氧參數 39 4.7 肌肉電訊號參數分析 41 4.8 統計方法 45 4.9 研究參與者基本資料 45 4.10 自行車最大能力分析結果,功率、心肺生理、肌肉血氧參數 46 4.10.1 初始狀態,功率、心肺生理、肌肉血氧參數性別差異 46 4.10.2 休息階段,功率、心肺生理、肌肉血氧參數性別差異 47 4.10.3 暖身階段,功率、心肺生理、肌肉血氧參數性別差異 49 4.10.5 暖身階段與最大能力階段,功率、心肺生理、肌肉血氧參數前後差異 53 4.11 自行車最大能力分析結果,肌肉電訊號參數性別差異 54 4.11.1 暖身階段,肌肉電訊號參數 54 4.11.2 最大能力階段,肌肉電訊號參數性別差異 55 4.11.3 暖身階段與最大能力階段,肌肉電訊號參數前後差異 56 4.12 跑步最大能力分析結果,速度、心肺生理、肌肉血氧參數 58 4.12.1 初始狀態,功率、心肺生理、肌肉血氧參數性別差異 58 4.12.2 休息階段,速度、心肺生理、肌肉血氧參數性別差異 59 4.12.3 暖身階段,速度、心肺生理、肌肉血氧參數性別差異 61 4.12.5 暖身階段與最大能力階段,速度、心肺生理、肌肉血氧參數前後差異 65 4.13 跑步最大能力分析結果,肌肉電訊號參數 66 4.13.1 暖身階段,肌肉電訊號參數性別差異 66 4.13.2 最大能力階段,肌肉電訊號參數性別差異 67 4.13.3 暖身階段與最大能力階段,肌肉電訊號參數前後差異 68 第五章、結論未來展望 70 參考文獻 71 附錄一、自行車大能力測驗,速度、心肺生理、肌肉血氧數據視覺化 81 附錄二、跑步最大能力測驗,速度、心肺生理、肌肉血氧數據視覺化 82 附錄三、自行車肌肉電訊號數據視覺化 83 附錄四、跑步肌肉電訊號數據視覺化 84

    Ainsworth, B. E., McMurray, R. G., & Veazey, S. K. (1997). Prediction of peak oxygen uptake from submaximal exercise tests in older men and women. Journal of Aging and Physical Activity, 5(1), 27-38.
    Arena, R., Myers, J., Williams, M. A., Gulati, M., Kligfield, P., Balady, G. J., Collins, E., & Fletcher, G. (2007). Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation, 116(3), 329-343.
    Astorino, T. A., Robergs, R. A., Ghiasvand, F., Marks, D., & Burns, S. (2000). Incidence of the oxygen plateau at VO2max during exercise testing to volitional fatigue. Journal of exercise physiology online, 3(4), 1-12.
    Barnett, M. W., & Larkman, P. M. (2007). The action potential. Practical neurology, 7(3), 192-197.
    Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70-84.
    Bassett Jr, D. R. (2002). Scientific contributions of AV Hill: exercise physiology pioneer. Journal of Applied Physiology, 93(5), 1567-1582.
    Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded exercise testing protocols for the determination of VO 2 max: historical perspectives, progress, and future considerations. Journal of sports medicine, 2016.
    Bendahan, D., Chatel, B., & Jue, T. (2017). Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 313(6), R740-R753.
    Beneke, R., Leithäuser, R. M., & Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International journal of sports physiology and performance, 6(1), 8-24.
    Bentley, D. J., Newell, J., & Bishop, D. (2007). Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Medicine, 37, 575-586.
    Bonaventura, J. M., Sharpe, K., Knight, E., Fuller, K. L., Tanner, R. K., & Gore, C. J. (2015). Reliability and accuracy of six hand-held blood lactate analysers. Journal of sports science & medicine, 14(1), 203.
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
    Bornstein, D. B., Beets, M. W., Byun, W., & McIver, K. (2011). Accelerometer-derived physical activity levels of preschoolers: a meta-analysis. Journal of Science and Medicine in Sport, 14(6), 504-511.
    Buchfuhrer, M. J., Hansen, J. E., Robinson, T. E., Sue, D. Y., Wasserman, K., & Whipp, B. (1983). Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology, 55(5), 1558-1564.
    Carter, J. B., Banister, E. W., & Blaber, A. P. (2003). Effect of endurance exercise on autonomic control of heart rate. Sports Medicine, 33, 33-46.
    Chen, M. J., Fan, X., & Moe, S. T. (2002). Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. Journal of Sports Sciences, 20(11), 873-899.
    Chidnok, W., DiMenna, F. J., Bailey, S. J., Burnley, M., Wilkerson, D. P., Vanhatalo, A., & Jones, A. M. (2013). is not altered by self-pacing during incremental exercise. European Journal of Applied Physiology, 113(2), 529-539.
    Contreras-Briceño, F., Espinosa-Ramirez, M., Keim-Bagnara, V., Carreño-Román, M., Rodríguez-Villagra, R., Villegas-Belmar, F., Viscor, G., Gabrielli, L., Andía, M. E., & Araneda, O. F. (2022). Determination of the respiratory compensation point by detecting changes in intercostal muscles oxygenation by using Near-Infrared Spectroscopy. Life, 12(3), 444.
    Coquart, J. B., Garcin, M., Parfitt, G., Tourny-Chollet, C., & Eston, R. G. (2014). Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine, 44, 563-578.
    Davis, J. A. (1985). Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, 17(1), 6-21.
    Day, J. R., Rossiter, H. B., Coats, E. M., Skasick, A., & Whipp, B. J. (2003). The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. Journal of applied physiology, 95(5), 1901-1907.
    Del Vecchio, A., Negro, F., Felici, F., & Farina, D. (2017). Associations between motor unit action potential parameters and surface EMG features. Journal of applied physiology, 123(4), 835-843.
    Delves, R. I., Aughey, R. J., Ball, K., & Duthie, G. M. (2021). The quantification of acceleration events in elite team sport: A systematic review. Sports Medicine-Open, 7(1), 1-35.
    Ebert, T. R., Martin, D. T., McDonald, W., Victor, J., Plummer, J., & Withers, R. T. (2005). Power output during women’s World Cup road cycle racing. European Journal of Applied Physiology, 95(5-6), 529-536.
    Eston, R. G. (2009). Perceived exertion: Recent advances and novel applications in children and adults. Journal of Exercise Science & Fitness, 7(2), S11-S17.
    Farina, D., Merletti, R., & Enoka, R. M. (2004). The extraction of neural strategies from the surface EMG. Journal of Applied Physiology, 96(4), 1486-1495.
    Ferrari, M., & Quaresima, V. (2012). Near infrared brain and muscle oximetry: from the discovery to current applications. Journal of Near Infrared Spectroscopy, 20(1), 1-14.
    Filligoi, G., & Felici, F. (1999). Detection of hidden rhythms in surface EMG signals with a non-linear time-series tool. Medical engineering & physics, 21(6-7), 439-448.
    Fox 3rd, S., & Haskell, W. (1968). Physical activity and the prevention of coronary heart disease. Bulletin of the New York Academy of Medicine, 44(8), 950.
    González‐Alonso, J., Richardson, R. S., & Saltin, B. (2001). Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. The Journal of Physiology, 530(2), 331-341.
    Goodrich, J. A., Ryan, B. J., & Byrnes, W. C. (2018). The influence of oxygen saturation on the relationship between hemoglobin mass and VO2max. Sports medicine international open, 2(04), E98-E104.
    Gunga, H. C. (2013). Nathan Zuntz: his life and work in the fields of high altitude physiology and aviation medicine. Springer Science & Business Media.
    Heckman, C., & Enoka, R. M. (2012). Motor unit. Comprehensive physiology(4), 2629-2682.
    Hill, A. V., Long, C., & Lupton, H. (1924a). Muscular exercise, lactic acid, and the supply and utilisation of oxygen.—Parts IV-VI. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 97(681), 84-138.
    Hill, A. V., Long, C. N. H., & Lupton, H. (1924b). Muscular exercise, lactic acid and the supply and utilisation of oxygen.—Parts VII–VIII. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 97(682), 155-176.
    Howley, E. T., Bassett, D. R., & Welch, H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. Medicine & Science in Sports & Exercise, 27(9), 1292-1301.
    Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine & Science in Sports & Exercise, 36(6), 1042-1047.
    Jones, A. M., & Vanhatalo, A. (2017). The ‘critical power’concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Medicine, 47, 65-78.
    Kang, J., Chaloupka, E. C., Mastrangelo, M. A., Biren, G. B., & Robertson, R. J. (2001). Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. European Journal of Applied Physiology, 84(4), 291-295.
    Katzmarzyk, P. T., Church, T. S., & Blair, S. N. (2004). Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Archives of internal medicine, 164(10), 1092-1097.
    Kirkeberg, J., Dalleck, L., Kamphoff, C., & Pettitt, R. (2011). Validity of 3 protocols for verifying VO2max. International journal of sports medicine, 266-270.
    Lambert, G. (1918). The exercise blood pressure test of myocardial efficiency. British Medical Journal, 2(3014), 366.
    Lehtonen, E., Gagnon, D., Eklund, D., Kaseva, K., & Peltonen, J. E. (2022). Hierarchical framework to improve individualised exercise prescription in adults: A critical review. BMJ Open Sport—Exercise Medicine, 8(2).
    Leo, P., Spragg, J., Podlogar, T., Lawley, J. S., & Mujika, I. (2022). Power profiling and the power-duration relationship in cycling: a narrative review. European Journal of Applied Physiology, 1-16.
    Levine, B. D. (2008). : what do we know, and what do we still need to know? The Journal of Physiology, 586(1), 25-34.
    LourenÇo, T. F., Martins, L. E. B., Tessutti, L. S., Brenzikofer, R., & Macedo, D. V. (2011). Reproducibility of an incremental treadmill VO2max test with gas exchange analysis for runners. The Journal of Strength & Conditioning Research, 25(7), 1994-1999.
    Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021). The Effects of Running Compared with Functional High-Intensity Interval Training on Body Composition and Aerobic Fitness in Female University Students. International Journal of Environmental Research and Public Health, 18(21), 11312.
    Mauger, A. R., & Sculthorpe, N. (2011). A new VO2max protocol allowing self-pacing in maximal incremental exercise. British journal of sports medicine.
    McCully, K. K., & Hamaoka, T. (2000). Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exercise and sport sciences reviews, 28(3), 123-127.
    Mesin, L., Cescon, C., Gazzoni, M., Merletti, R., & Rainoldi, A. (2009). A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. Journal of Electromyography and Kinesiology, 19(5), 851-863.
    Midgley, A., McNaughton, L., & Carroll, S. (2007). Time at V· O2max during Intermittent Treadmill Running: Test Protocol Dependent or Methodological Artefact? International journal of sports medicine, 934-939.
    Mitchell, J., Kist, W. B., Mears, K., Nalls, J., & Ritter, K. (2010). Does standing on a cycle-ergometer, towards the conclusion of a graded exercise test, yield cardiorespiratory values equivalent to treadmill testing? International journal of exercise science, 3(3), 117.
    Morais, P., Campbell, C., Sales, M., Motta, D., Moreira, S., Cunha, V., Benford, R., & Simoes, H. (2011). Acute resistance exercise is more effective than aerobic exercise for 24 h blood pressure control in type 2 diabetics. Diabetes & metabolism, 37(2), 112-117.
    Muraoka, T., Kawakami, Y., Tachi, M., & Fukunaga, T. (2001). Muscle fiber and tendon length changes in the human vastus lateralis during slow pedaling. Journal of Applied Physiology, 91(5), 2035-2040.
    Nepi, D., Sbrollini, A., Agostinelli, A., Maranesi, E., Morettini, M., Di Nardo, F., Fioretti, S., Pierleoni, P., Pernini, L., & Valenti, S. (2016). Validation of the heart-rate signal provided by the Zephyr bioharness 3.0. 2016 Computing in Cardiology Conference (CinC),
    Paton, C. D., & Hopkins, W. G. (2001). Tests of cycling performance. Sports Medicine, 31, 489-496.
    Poole, D. C., & Mathieu-Costello, O. (1989). Skeletal muscle capillary geometry: adaptation to chronic hypoxia. Respiration physiology, 77(1), 21-29.
    Poole, D. C., Wilkerson, D. P., & Jones, A. M. (2008). Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. European Journal of Applied Physiology, 102(4), 403-410.
    Racinais, S., Buchheit, M., & Girard, O. (2014). Breakpoints in ventilation, cerebral and muscle oxygenation, and muscle activity during an incremental cycling exercise. Frontiers in physiology, 5, 142.
    Reaz, M. B. I., Hussain, M. S., & Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. Biological procedures online, 8, 11-35.
    Roffey, D. M., Byrne, N. M., & Hills, A. P. (2007). Effect of stage duration on physiological variables commonly used to determine maximum aerobic performance during cycle ergometry. Journal of Sports Sciences, 25(12), 1325-1335.
    Scharhag-Rosenberger, F., Meyer, T., Walitzek, S., & Kindermann, W. (2009). Time course of changes in endurance capacity: a 1-yr training study.
    She, J., Nakamura, H., Makino, K., Ohyama, Y., & Hashimoto, H. (2015). Selection of suitable maximum-heart-rate formulas for use with Karvonen formula to calculate exercise intensity. International journal of automation and computing, 12, 62-69.
    Simões, R. P., Bonjorno Jr, J. C., Beltrame, T., Catai, A. M., Arena, R., & Borghi-Silva, A. (2013). Slower heart rate and oxygen consumption kinetic responses in the on-and off-transient during a discontinuous incremental exercise: effects of aging. Brazilian Journal of Physical Therapy, 17, 69-76.
    Stone, J. D., Ulman, H. K., Tran, K., Thompson, A. G., Halter, M. D., Ramadan, J. H., Stephenson, M., Finomore, V. S., Galster, S. M., Rezai, A. R., & Hagen, J. A. (2021). Assessing the Accuracy of Popular Commercial Technologies That Measure Resting Heart Rate and Heart Rate Variability [Original Research]. Frontiers in Sports and Active Living, 3.
    Tanaka, H., Bassett Jr, D. R., Best, S. K., & Baker Jr, K. R. (1996). Seated versus standing cycling in competitive road cyclists: uphill climbing and maximal oxygen uptake. Canadian Journal of Applied Physiology, 21(2), 149-154.
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the american college of cardiology, 37(1), 153-156.
    Taylor, G. S., Smith, K., Capper, T. E., Scragg, J. H., Bashir, A., Flatt, A., Stevenson, E. J., McDonald, T. J., Oram, R. A., & Shaw, J. A. (2020). Postexercise glycemic control in type 1 diabetes is associated with residual β-cell function. Diabetes Care, 43(10), 2362-2370.
    Tipton, C. M. (2014). History of exercise physiology. Human Kinetics.
    Troiano, R. P., McClain, J. J., Brychta, R. J., & Chen, K. Y. (2014). Evolution of accelerometer methods for physical activity research. British journal of sports medicine.
    Wang, Y., Yin, L., Bai, Y., Liu, S., Wang, L., Zhou, Y., Hou, C., Yang, Z., Wu, H., & Ma, J. (2020). Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science advances, 6(43), eabd0996.
    Weston, S., Gray, A., Schneider, D., & Gass, G. (2002). Effect of ramp slope on ventilation thresholds and V˙ O2peak in male cyclists. International journal of sports medicine, 23(01), 22-27.
    Williams, N. (2017). The Borg rating of perceived exertion (RPE) scale. Occupational medicine, 67(5), 404-405.
    Zadow, E. K., Kitic, C. M., Wu, S. S., Smith, S. T., & Fell, J. W. (2016). Validity of power settings of the Wahoo KICKR power trainer. International journal of sports physiology and performance, 11(8), 1115-1117.
    Zhang, Y., Johnson 2nd, M., Chow, N., & Wasserman, K. (1991). Effect of exercise testing protocol on parameters of aerobic function. Medicine and Science in Sports and Exercise, 23(5), 625-630.

    無法下載圖示 全文公開日期 2034/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE