簡易檢索 / 詳目顯示

研究生: 盧昶宇
CHANG-YU LU
論文名稱: 高性能無轉軸偵測元件開關式磁阻電動機應用於洗衣機驅動系統的研製
Design and Implementation of a High-Performance Sensorless Switched Reluctance Motor Drive System for Washing Machine Applications
指導教授: 劉添華
Tian-Hua Liu
口試委員: 葉勝年
Sheng-Nian Yeh
王醴
Li Wang
廖聰明
Chang-Ming Liaw
賴炎生
Yen-Shin Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 164
中文關鍵詞: 無轉軸偵測元件驅動系統開關式磁阻電動機數位信號處理器
外文關鍵詞: switched reluctance motor, sensorless, digital signal processor
相關次數: 點閱:342下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研製高功因可調電壓無轉軸偵測元件之開關式磁阻電動機驅動系統,並實際應用在洗衣機。文中介紹開關式磁阻電動機的結構、原理及數學模式,說明無轉軸偵測元件系統驅動方法,並探討於電源側加入一功因校正電路,提升電動機運轉輸入側電源的功率因數。最後,再加入一可調降壓電路,藉以調整直流鏈電壓,進一步降低電動機之噪音及振動。本文所提之開關式磁阻電動機轉軸角度估測法,係利用即時運算電動機激磁繞組的磁通鏈,再配合事先建立的電動機磁通鏈對電流及轉軸角度的關係表,以決定激磁相位及估測轉速。
本論文將開關式磁阻電動機應用在洗衣機驅動系統,以數位信號處理器TMS320LF2407A晶片為系統核心發展軟體,執行無轉軸角度估測方法進行換相及估測轉速,完成閉迴路控制,實測結果驗證本文所提出的方法確實可行。


The thesis investigates into the design and implementation of a high power-factor, adjustable voltage, sensorless switched reluctance motor drive system, which is used in a washing machine. First, the structure, principle, and mathematical model of the switched reluctance motor are introduced. Then, a sensorless drive system is illustrated. After that, a power factor correction circuit is used to improve the the power factor of the ac input side. Finally, a buck converter is implemented to adjust the dc voltage and then to reduce the acoustic noise and vibration. The thesis proposes a simple rotor position estimating method. By computing the flux and comparing the table, the rotor position and speed can be obtained.
The proposed switched reluctance motor drive system is applied to a washing machine. A digital signal processor, TMS320LF2407A, is used as a control unit to execute the sensorless operation and achieve closed-loop control system. Experimental results verify the correctness and feasibility of the proposed system.

中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3目的 4 1.4大綱 5 第二章 開關式磁阻電動機基本原理 6 2.1簡介 6 2.2結構 6 2.3數學模式 10 2.4驅動原理 13 第三章 開關式磁阻電動機驅動系統 16 3.1簡介 16 3.2功率轉換器 17 3.3轉矩及弱磁控制 26 3.4四象限控制 27 第四章 無轉軸偵測元件驅動系統 31 4.1簡介 31 4.2轉軸角/速度估測方法 33 4.2.1離線式磁通鏈量測方法 34 4.2.2轉軸角/速度估測方法 35 4.2.3啟動方法 38 4.2.4閉迴路系統 39 4.3估測法則分析 40 第五章 功因校正電路介紹 42 5.1 簡介 42 5.2 功率因數的定義 43 5.3功因校正電路原理 46 5.3.1功因校正電路架構 46 5.3.2控制方法 49 5.4 功因校正電路 54 第六章 可調降壓電路 57 6.1 簡介 57 6.2降壓型轉換器工作原理 57 6.3電壓可調電路 61 6.4電壓調整法則 63 6.4.1模糊理論 63 6.4.2電壓調整模糊控制設計 65 6.5電壓調整的優缺點比較 70 第七章 系統研製 71 7.1簡介 71 7.2洗衣機簡介 74 7.2.1洗衣機結構 75 7.2.2開關式磁阻電動機驅動洗衣機系統簡介 76 7.3硬體電路製作 77 7.3.1功率轉換器電路 77 7.3.2回授及偵測電路 78 7.3.3功因校正電路設計 82 7.3.4功因校正功率級電路相關元件設計 84 7.3.5功因校正控制電路設計 89 7.3.6可調降壓轉換器設計 92 7.3.7可調降壓功率級電路相關元件設計 94 7.3.8可調降壓控制電路設計 97 7.4數位信號處理器架構 99 7.5軟體程式設計 100 7.5.1主程式 100 7.5.2中斷服務程式 102 第八章 實測結果 106 8.1簡介 106 8.2實測結果 107 第九章 結論與建議 143 參考文獻 144

[1]P. C. Sen, “Electric motor drives and control-past, present, and future,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 562-575, December 1990.
[2]B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 902-909, September/October 1993.
[3]M. Comanescu and L. Xu, “An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 50-56, February 2006.
[4]A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1531-1537, July 2007.
[5]J. P. Lecointe, R. Romary, J. F. Brudny, and M. McClelland, “Analysis and active reduction of vibration and acoustic noise in the switched reluctance motor,” IEE Proceedings - Electric Power Applications, vol. 151, no. 6, pp. 725-733, November 2004.
[6]K. Ha, C. Lee, J. Kim R. Krishnan, and S. G. Oh, “Design and development of low-cost and high-efficiency variable-speed drive system with switched reluctance motor,” IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 703-713, May/June 2007.
[7]N. C. Sahoo, J. X. Xu, and S. K. Panda, “Low torque ripple control of switched reluctance motors using iterative learning,” IEEE Transactions on Energy Conversion, vol. 16, no. 4, pp. 318-326, December 2001.
[8]W. Cai, P. Pillay, Z.Tang, and A. M. Omekanda, “Low-vibration design of switched reluctance motors for automotive applications using modal analysis, ” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 971-977, July/August 2003.
[9]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 15-27, February 2002.
[10]N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 3214-3216, September 2003.
[11]N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 714-722, May/June 2000.
[12]A. K. Jain and N. Mohan, “SRM power converter for operation with high demagnetization voltage,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1224-1231, September/October 2005.
[13]M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, April 1993.
[14]K. J. Tseng, S. Cao, and J. Wang, “A new hybrid c-dump and buck-fronted converter for switched reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 6, pp. 1228-1236, December 2000.
[15]W. K. Thong and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability, ” IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1676-1681, Novenber/December 2000.
[16]K. Y. Cho, and J. Y. Lim, “Power converter circuit for a switched reluctance motor using a flyback transformer,” IEE Proceedings - Electric Power Applications, vol. 150, no. 1, pp. 88-96, January 2003.
[17]P. L. Chapman and S. D. Sudhoff, “Design and precise realization of optimized current waveforms for an 8/6 switched reluctance drive,” IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 76-83, January 2002.
[18]M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 711-715, June 2001.
[19]K. M. Rahman, S. Gopalakrishnan, B. Fahimi, A. V. Rajarathnam, and M. Ehsani, “Optimized torque control of switched reluctance motor at all operational regimes using neural network,” IEEE Transactions on Industry Applications, vol. 37, no. 3, pp. 904-913, May/June 2001.
[20]K. Russa, I. Husain, and M. E. Elbuluk, “A self-tuning controller for switched reluctance motors,” IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 545-552, May 2000.
[21]E. Mese and D. A. Torrey, “An approach for sensorless position estimation for switched reluctance motors using artifical neural networks,” IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 66-75, January 2002.
[22]H. Gao, F. R. Salmasi, and M. Ehsani, “Inductance model-based sensorless control of the switched reluctance motor drive at low speed,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1568-1573, November 2004.
[23]R. A. McCann, M. S. Islam, and I. Husain, “Application of a sliding-mode observer for position and speed estimation in switched reluctance motor drives,” IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 51-58, January/February 2001.
[24]D. Panda and V. Ramanarayanan, “Sensorless control of switched reluctance motor drive with self-measured flux-linkage characteristics,” IEEE PESC-2000, pp. 1569-1574.
[25]A. D. Cheok and Z. Wang, “Fuzzy logic rotor position estimation based switched reluctance motor DSP drive with accuracy enhancement,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 908-921, July 2005.
[26]J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proceedings - Electric Power Applications, vol. 153, no. 3, pp. 348-360, May 2006.
[27]D. Panda and V. Ramanarayanan, “Reduced acoustic noise variable dc-bus-voltage-based sensorless switched reluctance motor drive for HVAC applications,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2065-2078, August 2007.
[28]P. O. Rasmussen, J. H. Andreasen, and J. M. Pijanowski, “Structural stator spacers-a solution for noise reduction of switched reluctance motors,” IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 574-581, March/April 2004.
[29]J. W. Lee , H. S. Kim, B. I. Kwon, and B. T. Kim, “New rotor shape design for minimum torque ripple of SRM using FEM,” IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 754-757, March 2004.
[30]R. T. Chen and Y. Y. Chen, “Single-stage push-pull boost converter with integrated magnetics and input current shaping technique,” IECON-2006, pp. 1193-1203.
[31]W. Zhang, G. Feng, Y. F. Liu, and B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, November 2004.
[32]M. Ehsani, I. Husain, K. R. Ramini, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, April 1993.
[33]A. M. Hava, V. Blasko, and T. A. Lipo, “A modified c-dump converter for variable reluctance machines,” IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1017-1022, September/October 1992.
[34]C. Pollock and B. W. Williams, “Power convertor circuits for switched reluctance motors with the minimum number of switches,” IEE Proceedings - Power Electric Applications, vol. 137, no. 6, pp. 373-384, November 1990.
[35]W. D. Harris and J. H. Lang, “A simple motion estimator for variable-reluctance motors,” IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 237-243, March/April 1990.
[36]M. Ehsani, I. Husain, and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Transactions on Industry Applications, vol. 28, no. 1, pp. 128-135, January/February 1992.
[37]B. Andreycak, power factor correction design consideration and the UC3854N PWM controller, product & applications handbook, Unitrod Inc. 1997.
[38]Patrick Griffith, designing switching voltage regulators with the TL494 and application report, Texas Instruments, 2005.
[39]新華電腦, DSP從此輕鬆跑<以TI DSP 320LF2407A為主題>, 台科大圖書股份有限公司, 2003年十月。

無法下載圖示 全文公開日期 2013/07/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE