簡易檢索 / 詳目顯示

研究生: 徐泰裕
Tai-Yu Shi
論文名稱: 使用格雷編碼波形之三倍頻發射相位法於顯影劑諧波影像
Golay Code in Third Transmit Phasing for Harmonic Contrast Detection
指導教授: 沈哲州
Che-Chou Shen
口試委員: 黃騰毅
Teng-Yi Huang
王士豪
Shyh-Hau Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 三倍頻發射相位法Golay編碼顯影劑諧波影像訊雜比(SNR)顯影劑對組織對比度 (CTR)
外文關鍵詞: 3f0 transmit phasing, contrast harmonic image, Contrast-to-tissue ratio (CTR)
相關次數: 點閱:367下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

醫用超音波諧波影像常受限於其較低的訊雜比(SNR)以及不足的微氣泡顯影劑與背景組織之間對比度(CTR),三倍頻發射相位法可藉由發射基頻與可改變相位的三倍頻信號來產生頻率和與頻率差成分來抑制或增強組織諧波信號以改善諧波影像的品質,本研究中我們進一步探討三倍頻發射相位法與Golay編碼波型結合的設計方式與對諧波影像的影響。
Golay編碼應用在一般線性影像上是藉由發射兩組由+1與1位元波形構成的脈衝序列,並將接收信號經由匹配濾波器做脈衝壓縮以加強聲束主瓣(Mainlobe)的強度來提升訊雜比,並消去軸向旁瓣(Range Sidelobe)的干擾。而在諧波成像中為達到Golay編碼效果,基頻與三倍頻發射信號的相位將必須分別往前與往後調整90∘以產生1位元波形的諧波信號編碼。本研究利用組織與顯影劑的諧波模擬來驗證該Golay編碼設計並以實驗量測對應的諧波信號與影像。
研究結果顯示Golay編碼配合三倍頻相位法依其編碼長度不同能有效的改善訊雜比到8~14 dB,並提升影像之顯影劑對組織對比度達14~16 dB,但因微氣泡特殊的非線性振盪導致顯影劑區域仍殘留明顯的軸向旁瓣,因此對顯影劑諧波影像品質造成一定的劣化。


Ultrasonic harmonic image is limited by low signal-to-noise ratio (SNR) and insufficient contrast-to-tissue ratio (CTR). The method of 3f0 transmit phasing utilizes an additional 3f0 transmit signal to provide mutual cancellation between the frequency-sum component and frequency-difference component of tissue harmonic signal to improve image quality. This paper presents a technique that uses Golay code in third harmonic (3f0) transmit phasing for harmonic imaging with ultrasound.
In linear imaging, Golay coded transmission is achieved by transmitting two coded sequences comprising of +1 and -1 pulses. The echoes from the two coded transmissions are processed with matched filter and are summed to increase mainlobe SNR. The complementary range sidelobes are also cancelled in the sum. To produce the -1 pulse of the Golay code for the harmonic signal in 3f0 transmit phasing, the phase shift of 90 degrees is added into the fundamental transmit phase and subtracted from the 3f0 transmit phase, respectively. Both simulations and experiments are performed to validate the Golay-encoded transmit waveform for the 3f0 transmit phasing.
Our results show that, depending on the code length, the Golay code in combination with the 3f0 transmit phasing can enhance SNR by 8~14 dB together with the CTR improvement of 14~16 dB. Nevertheless, due to unique nonlinear oscillation of the microbubbles, the residual range sidelobes remain in the contrast region and thus lead to image degradation.

Keywords: 3f0 transmit phasing, Golay code, contrast harmonic image, SNR, Contrast-to-tissue ratio (CTR)

致謝 I 中文摘要 II Abstract IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1超音波影像基本原理 1 1-2 超音波諧波信號與成像 5 1-2-1組織諧波信號 5 1-2-2 顯影劑諧波信號 7 1-2-3 超音波諧波影像 9 1-2-4組織諧波信號的抑制與編碼波形相關研究 11 1-3三倍頻發射相位法原理 16 1-4 研究動機、目標與論文架構 19 第二章 格雷編碼於三倍頻發射相位法 22 2-1 格雷編碼原理與特性 22 2-2 適用於三倍頻相位法的格雷編碼 24 第三章 研究方法 29 3-1 聲場模擬 29 3-1-1 組織聲場模擬 29 3-1-2 顯影劑聲場模擬 31 3-2 實驗架構 33 3-2-1線仿體諧波量測 33 3-2-2 B-mode諧波影像 34 第四章 研究結果 36 4-1 諧波信號模擬 36 4-2 壓縮後格雷信號之旁瓣產生 42 4-3 諧波信號量測 49 4-3-1不同頻寬的匹配濾波器之壓縮比較 49 4-3-2 組織諧波抑制 51 4-4氣泡旁瓣的產生 53 4-5 B-mode諧波影像 55 第五章 討論與結論 58 5-1 討論與結論 58 5-2 未來工作 60 參考文獻 60

[1] C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.
[2] R. T. Beyer and S. V. Letcher, Nonlinear acoustics. New York: Academic, 1969, pp. 202-230.
[3] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, March 1983.
[4] P. H. Chang, K. K. Shung, S. J. Wu et al., “Second harmonic imaging and harmonic Doppler measurements with Albunex,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 6, pp. 1020–1027, Nov. 1995.
[5] N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.
[6] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., vol.26, no. 1, pp. 93–104, 2000.
[7] F. Tranquart, N. Grenier, V. Eder and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound in Med. & Biol., vol.25, no. 6, pp. 889–894, 1999.
[8] Bruce M, Averkiou M., Tiemann K, Lohmaier S,Powers J,Bearch K ‘’Vascular flow and perfusion imaging with ultrasound contrast agents,” Ultrasound in Med. & Bio.l, vol. 30, no. 6, pp. 735–743, 2004.
[9] A. Bouakaz. S. Frigstad, F.J. Ten Cate ans N. de Jong,‘’Superharmonic imaging:A new imaging technique for improved contrast detection” Ultrasound in Med. & Bio.l, vol. 28, no. 1, pp. 59-68, 2002.
[10] D. E. Goertz, M. E. Frijlink, D. Tempel, V. Bhagwandas, A. Gisolf, R. Krams, N. de Jong and A. F. W. van der Steen, “Subharmonic contrast intravascular ultrasound for vasa vasorum imaging, ” Ultrasound Med. Biol., vol. 33, no. 12, pp. 1859-1872, 2007.
[11] C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.
[12] R. J. Eckersley, C. T. Chin, and P. N. Burns, “Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound Med. Biol.,vol. 2, pp. 213–219, 2005.
[13] Borsboom JM, Bouakaz A, de Jong N ‘’Pulse subtraction time delay imaging method for ultrasound contrast agent detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 6, pp. 1151–1158, 2009.
[14] O. Couture, J. F. Aubry, G. Montaldo, M. Tanter and M. Fink, “Suppression of tissue harmonics for pulse-inversion contrast imaging using time reversal,” Phys. Med. Biol., vol.53, pp. 5469–5480, 2008.
[15] Sun Y, Kruse DE, Ferrara KW.‘’Contrast imaging with chirped excitation.,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 3, pp. 520–529, 2007
[16] Shen CC, Chiu YY.,“Design of chirp excitation waveform for dual-frequency harmonic contrast detection.,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 10, pp.2198–2206, Oct 2009.
[17] A . W. Rihaczek and R. M. Golden,“Range sidelobe suppression for Barker codes,” IEEE Trans. Aerosp. Electron. Syst., vol. 7, no. 6, pp.1087–1092, May 1971.
[18] Leavens C, Williams R, Foster FS, Burns PN, Sherar MD.‘’Golay pulse encoding for microbubble contrast imaging in ultrasound.,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 10, pp. 2082–2090, 2007.
[19] Y. Li and J. A. Zagzebski, “A Frequency Domain Model for Generating B-Mode Images with Array Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 690-698, May. 1999.
[20] P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging,” Ultrason Imaging, vol. 29, pp. 73-86, 2007.
[21] K. Chetty, J. V. Hajnal and R. J. Eckersley, “Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences,” Ultrasound in Med. & Bio.l, vol. 32, no. 12, pp. 1887–1895, 2006.
[22] S. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, and N. de Jong, “The resonance frequency of SonoVue™ as observed by high-speed optical imaging,” Proc. IEEE Ultrason. Symp., pp. 343–345, 2004.

QR CODE