簡易檢索 / 詳目顯示

研究生: 買亞涵
Ya-Han Mai
論文名稱: 微流道水冷散熱器之最佳化性能分析
Optimization of Water Coolers with Microchannels
指導教授: 洪俊卿
Jin-Tsing Hong
口試委員: 莊福盛
Fu-Sheng Chuang
陳恩宗
En-Tsung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 水冷散熱器微流道最佳化鰭片
外文關鍵詞: water cooler, microchannel, optimization, fin
相關次數: 點閱:354下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文從一維解析解來初步的預測微流道模型在不同流量下熱阻與壓降的變化情況,再以數值模擬來印證,結果顯示解析解與數值解在不同流量下,熱阻約有3%到14%的誤差,壓降約有小於3%的誤差。可以發現解析解在預測壓降上有相當的準確性,而在熱阻的預測上誤差雖然稍大,但仍可正確提供各種設計參數對熱阻影響程度的資訊,再加上算法簡單迅速,理念清晰,因此可做為散熱器初步設計時,不可或缺的工具。一但利用解析解得到散熱器初步的設計範圍,可以進一步利用數值模擬及實驗的方法得到比較詳細的熱流數據並驗證解析方法的正確性。由於得到解析方法的引導,可以大幅縮減數值模擬與實驗的範圍,可在最短的時間,以較低的成本得到最佳的設計。
在散熱器的最佳化方面,本文結合田口方法並以FLUENT為數值模擬軟體來進行。採用直交表,選定流道寬度、鰭片厚度、鰭片高度與底板厚度為控制因子,各選定3種水準做參數設計,以得到最低熱阻為目標函數,探討不同因子對於壓降與熱阻的影響。
透過分析每個因子的信雜比反應與熱阻反應,得到散熱器的最佳化設計參數為:流道寬度0.1mm、鰭片厚度0.1mm、鰭片高度1.5mm及底板厚度4.5mm。在加熱條件為100W/cm^2與流量設定為0.2L/min時,數值模擬計算所得到的熱阻為0.166K/W,模型最高溫為316.6K,壓降為5208Pa。


In this study, the flow and heat transfer characteristics of a microchannel heat sink under liquid cooling condition are investigated using both analytical and numerical methods. The analytical method employed the 1-D thermal resistance network model to predict the thermal resistance of the heat sink, while the pressure drop is predicted by using empirical correlations available in open literatures. The commercially available CFD code, Fluent, is employed as a tool in doing the numerical analysis. Comparing to the numerical results, it is shown that the errors in pressure drop predicted by the analytical method are within 3%, while the errors in thermal resistance are between 3% to 14%. Although the accuracy of the analytical method is not perfect, its prediction ability for the flow and heat transfer characteristics is still good enough for it to be used as a preliminary tool for heat sink design.
In order to find the optimized design parameters for the water cooled heat sink with microchannels, the Taguchi method is employed in this study. Four different design parameters are explored:Water channel width between fins, fin height, fin width, and base plate thickness. Since three levels for each parameter are investigated, the L9 table of the Taguchi method is adopted in this study. It is found that the two most important factors that affect the pressure and thermal resistance are the channel width and the thickness of the base plate. Based on the Taguchi method, an optimized design for the heat sink is proposed:channel width 0.1mm, fin thickness 0.1mm, fin height 1.5mm and base plate thickness 4.5mm. The performance of the optimized design is confirmed by both analytical and numerical analysis.

摘要................................................................................................................................i Abstract........................................................................................................................ii 目錄...............................................................................................................................iv 符號索引......................................................................................................................vii 表目錄............................................................................................................................x 圖目錄..........................................................................................................................xii 第一章緒論..................................................................................................................1 1.1 前言..................................................................................................................1 1.2 文獻回顧..........................................................................................................2 1.3 研究動機與目標..............................................................................................5 第二章微流道水冷散熱器熱流特性的解析及數值模擬分析.................................9 2.1 解析方法..........................................................................................................9 2.1.1 熱阻模型..............................................................................................9 2.1.2 壓降模型............................................................................................11 2.2 物理參數介紹................................................................................................11 2.2.1 雷諾數(Reynolds number).................................................................11 2.2.2 水力直徑(Hydraulic Diameter).........................................................12 2.2.3 對流熱傳係數(Heat Transfer Coefficient)........................................12 2.2.4 紐賽數(Nusselt number)....................................................................12 2.2.5 普蘭特數(Prandtl number)................................................................13 2.3 數值模擬........................................................................................................13 2.3.1 數值分析流程....................................................................................13 2.3.2 模型建立與設計................................................................................13 2.3.3 網格切割與網格獨立性測試............................................................15 2.4 解析解與數值模擬的比較............................................................................16 2.4.1 熱阻比較............................................................................................17 2.4.2 壓降比較............................................................................................17 2.4.3 流量對熱阻與壓降的影響................................................................18 第三章田口方法........................................................................................................44 3.1 田口法原理....................................................................................................44 3.2 實驗因子的定義............................................................................................44 3.3 田口方法的實施步驟與因子交互作用........................................................45 3.3.1 品質特性............................................................................................46 3.3.2 因子交互作用....................................................................................47 3.4 直交表............................................................................................................48 第四章田口方法在微流道水冷散熱器最佳化的應用...........................................54 4.1 參數選擇與設計............................................................................................54 4.2 解析解熱阻的因子效應分析........................................................................56 4.2.1 解析解最佳化因子分析與結果........................................................58 4.3 數值模擬熱阻的因子效應分析....................................................................59 4.3.1 數值模擬最佳化因子分析與模擬結果............................................60 4.4 因子的重要性分析........................................................................................62 4.4 壓降模擬結果................................................................................................62 第五章結論與建議....................................................................................................80 5.1 結論................................................................................................................80 5.2 建議................................................................................................................81 參考文獻......................................................................................................................82

[1] "http://www.amd.com.tw/us-en/index.shtml AMD官方網站."
[2] "http://www.intel.com/#/zh_TW_01 Intel官方網站."
[3] D. Copeland, "Optimization of Parallel Plate Heatsinks for Forced Convection," Sixteenth IEEE SEMI-THERMTM Symposium, pp. 266-272, 2000.
[4] X. S. Liao, Y.Liu, Y.Q.Ning, D. M. Cheng, L. .Wang, and L. J. Wang, "The optimal design of structure parameters for microchannel heatsink," High-Power Lasers and Applications II vol. 4914, pp. 181-186, 2002.
[5] H. Y. Zhang, D. Pmjala, Y. K. Joshi, T. N. Wong, and K. C. Toh, "Thermal Modeling and Design of Liquid Cooled Heat Sinks Assembled with Flip Chip Ball Grid Array Packages," Electronic Components and Technology Conference, pp. 431-437, 2003.
[6] H. Y. Zhang, D. Pinjala, and P.-S. Teo, "Thermal Management of High Power Dissipation Electronic Packages:from Air Cooling to Liquid Cooling," in Electronics Packaging Technology Cmference, 2003.
[7] H. Y. Zhang, D. Pinjala, P. K.Chan, X. P. Liu, M. K. Iyer, and L. Xie, "THERMAL ANALYSIS AND MODELING OF DIODE ARRAY INTEGRATED WITH DIRECTIONAL LIQUID-COOLED HEAT SINK," Thermomechanical Phenomena in Electronic Systems, pp. 331-338, 2004.
[8] H. Y. Zhang, D. Pinjala, T. N. Wong, K. C. Toh, and Y. K. Joshi, "Single-phase liquid cooled microchannel heat sink for electronic packages," Applied Thermal Engineering 25, pp. 1472-1487, 2005.
[9] J.-Y. Chang, H. S. Park, J. I. Jo, and S. Julia, "A System Design of Liquid Cooling Computer Based on the Micro Cooling Technology," 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, vol. 1, pp. 157-160, 2006.
[10] S.-H. Wang, S. Melendez, R. Blanco, and M. Gomez, "Simulation of the Fluid Dynamics in Active Liquid Heat Sink for CPU Cooling System," Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, pp. 1-8, 2008.
[11] P. Naphon and S. Wiriyasart, "Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU," International Communications in Heat and Mass Transfer, vol. 36, pp. 166-171 2009.
[12] 劉建辰, "微電子散熱模組流道設計與散熱效能之研究," 中原大學機械工程學系碩士學位論文, 民國96年.
[13] F. P. Incropera, Introduction to heat transfer. New York :: Wiley, 1990.
[14] H. Y. Zhang, D. Pinjala, T. N. Wong, and Y. K. Joshi, "Development of liquid colling techniques for flip chip ball grid array packages with high heat flux dissipations," IEEE Transactions on Components and Packaging Technologies, pp. 127-135, 2005.
[15] S. Lee, S. Song, V. Au, and K. P.Moran, "Constriction/spreading resistance model for electronics packaging," ASME-JSME Thermal Engineering Conference, vol. 4, pp. 199-206, 1995.
[16] 李輝煌, 田口方法 : 品質設計的原理與實務 = Taguchi methods : principles and practices of quality design vol. 2. 台北縣五股鄉: 新科技總經銷民國93年.
[17] 田口玄一, 田口實驗計畫法 / 田口玄一原著; 陳耀茂譯. 台中市, 民國86年.
[18] 張季娜等譯, 田口式品質工程導論vol. 4, 民國82年.
[19] 立林和夫, 入門田口方法 : 風靡日本工程學的TQM手法; 葉琇芳譯. 台北市: 紅螞蟻圖書有限公司, 民國93年.
[20] 吳復強, 產品穩健設計---田口方法之原理與應用. 台北縣五股鄉: 全威圖書有限公司, 民國94年.
[21] 劉克琪, 實驗設計與田口式品質工程. 台北市: 華泰書局, 民國83年.

QR CODE