簡易檢索 / 詳目顯示

研究生: 李維烈
William - Lee
論文名稱: 二氧化鈰奈米顆粒之缺陷結構與室溫鐵磁特性關連性研究
The correlationship between ferromagnetism and defect structure in doped CeO2 nano-particles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳洋元
none
朱明文
none
郭永綱
none
郭東昊
Dong-Hau Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 158
中文關鍵詞: 二氧化鈰缺陷鐵磁性X光吸收光譜拉曼光譜
外文關鍵詞: CeO2, defect, ferromagnetism, XAS, Raman
相關次數: 點閱:484下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用沉澱法製備不同元素摻雜之二氧化鈰奈米顆粒,並以一系列的光譜分析探討被摻雜物誘發的缺陷結構,包括X光吸收光譜、拉曼光譜、紫外/可見光吸收光譜以及掃描穿透電子顯微鏡/電子能量損失光譜等,最後結合磁性量測結果,建立缺陷與磁性之關係。探討的主題有二:缺陷結構與缺陷分布。其中缺陷結構以摻雜不同類型元素進行討論,第一部份為不同離子半徑,包括La與Y。第二為不同電子組態,包括Pr及La。缺陷分布的影響則是分析退火前後之摻雜Pr之二氧化鈰奈米顆粒。
首先在離子半徑大小不同的La與Y摻雜二氧化鈰奈米顆粒方面,其摻雜濃度從0到15 at%。從X光吸收光譜與拉曼光譜的量測分析可發現隨著摻雜量增加,氧空缺的含量也跟著上升。在低摻雜量時主要氧空缺所造成的缺陷結構為M3+-Vo¬- M3+ (M= Ce, La or Y),而當摻雜量高於7%後,缺陷結構開始逐漸形成La3+-Vo-La3+或Y3+-Vo-Y3+。接著從掃描式穿透電子顯微鏡及電子能量損失光譜的分析發現在La摻雜二氧化鈰奈米顆粒中,La3+與Ce3+離子在系統中分布情形並不明顯,僅有少許聚集於顆粒中,而Y摻雜二氧化鈰奈米顆粒則趨向聚集於顆粒表面,造成該缺陷分布不同的原因可歸因於摻雜物離子半徑大小的不同。最後比較鐵磁性與缺陷關係發現摻雜La之二氧化鈰奈米顆粒的磁性較Y摻雜的弱,即表面的缺陷濃度高會貢獻較大的鐵磁性。
在電子組態不同的Pr摻雜二氧化鈰奈米顆粒研究方面,同樣以0到15 at%的摻雜濃度做合成。首先使用X光吸收光譜確認當Pr摻雜於系統中不論摻雜量多寡皆是以Pr3+形式存在,而Ce3+含量則隨著Pr摻雜量增加而產生改變,從開始的9%左右上升到10%後,當Pr摻雜量大於9%後Ce3+即隨之下降。此外,Pr摻雜二氧化鈰奈米顆粒從VSM的量測得知樣品皆為室溫鐵磁性。綜合拉曼光譜、X光吸收光譜與磁性結果比較,可發現缺陷結構會依Pr摻雜量增加而改變,接著使用FCE機制可推論出二氧化鈰奈米顆粒中缺陷結構與磁性關係的影響,並比較La摻雜二氧化鈰奈米顆粒探討電子組態與磁性的影響。
繼續將Pr摻雜二氧化鈰奈米顆粒在氧氣氣氛下做退火處理,使用X光吸收光譜中的Pr L-edge可清楚得知,經過氧氣退火後Pr依舊以三價的形式存在系統中沒有被氧化。而Ce3+含量則比退火前減少了許多,從8-10%下降到7-8%。拉曼光譜的分析也發現高摻雜量時缺陷結構從退火前的Pr3+-VO-Ce3+變成Pr3+-VO-Pr3+。從掃描式穿透電子顯微鏡及電子能量損失光譜發現,退火後系統中的Ce3+會聚集於顆粒表面,缺陷分布與磁性的關係將由FCE機制來建立。最後,本實驗討論因氧空缺產生的未束縛電子分布,更完整的詮釋有效F+ center在二氧化鈰奈米顆粒中影響鐵磁性的濃度。


In this study, the relationship between the defect structure and magnetism of doped CeO2 nanoparticle (NPs) was prepared by precipitation method, and was systematically investigated by using spectroscopy and microscopy. Including X-ray absorption spectroscopy (XAS) and Raman spectroscopy were utilized to investigate the electronic structure of these doped CeO2 NPs.
First, different size of ionic radius dopant, La and Y were doped in CeO2. It was found that the content of oxygen vacancies increased upon increasing dopant. The major oxygen vacancy defect structure was M3+−VO−M3+ (M = Ce, La or Y) in lightly doped NPs, whereas it changed to La3+−VO−La3+ or Y3+-Vo-Y3+ as the doping level reached 7%. Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM/EELS) analysis showed that, in the La-doped NPs, both the dopant (La3+) and Ce3+ were distributed rather homogeneously within the NPs, which is different from the behavior in other doped ceria materials, whereas Y-doped CeO2, for which strong interactions among the surface, trivalent cerium, and dopant. The distinct distribution of defects was attributed to the larger ion radius of La and the nature of the La-related oxygen vacancies. Moreover, room-temperature ferromagnetism (FM) was observed in these La-doped ceria but with a weaker intensity compared to the magnetism obtained for other doped ceria NPs with similar dopant concentrations. This indicates that high concentrations of defects and dopant at the surface are critical for obtaining larger FM.
Next, Pr3+(4f2) has different electron configuration from La3+(4f0), it is demonstrated that by raising the content of Pr, the degree of oxygen deficiency is enhanced monotonically, suggesting that oxygen and/or oxygen-related vacancies are induced. XAS analysis indicates the preference of the Pr-ions for the Pr3+ oxidation state. The concentration of Ce3+ stay constant at 9% then raise to 10% when Pr reaches 9%, with further Pr doping, Ce3+ decreases to 8%. From the results of Raman spectroscopy, the defect structures evolved from Ce4+-VO-Ce3+ to Pr3+-VO-Ce3+ as Pr contents increase. Together all spectroscopic results, the structure and evolution of above oxygen related defect was then unraveled. Furthermore, all the Pr-doped CeO2 NPs were found to be ferromagnetic at room temperature. The relationship between defect structure and ferromagnetism is explained by FCE mechanism.
Then Pr-doped CeO2 NPs were annealed in O2 atmosphere. From the results of spectroscopy, the defect structures become Pr3+-VO-Pr3+ in high doping level of O2 annealed Pr-doped CeO2 NPs while Ce4+-VO-Ce3+, Pr3+-VO-Ce3+ in Pr-doped CeO2. It is also observed that the distribution of oxygen vacancies after samples annealed is inhomogeneous from microscopy, although the ratio of Ce3+ slightly decreases after annealing, Ce3+ ions aggregate at the surface of particles. The relationship between defect structure and ferromagnetism can be explained by FCE mechanism. Furthermore, the amount of F+ center can be estimated by the results of XANES Ce L-edge and Raman spectroscopy. It is found the saturated magnetization is strongly related to the amount of F+ center in doped CeO2 NPs.

摘要………………………………………………………………………………….I Abstract………………………………………………………………………………IV 致謝…………………………………………………………………………………..VI 目錄…………………………………………………………………………………VII 圖索引……………………………………………………………………………IX 表索引…………………………………………………………………………….XII 第一章 緒論…………………………………………………………………………..1 1.1 前言………………………………………………………………………….1 1.2 研究動機…………………………………………………………………….2 第二章 文獻回顧…………………………………………………………………….4 2.1 磁性介紹……………………………………………………………………4 2.1.1 磁學基礎……………………………………………………………4 2.1.2 磁性的分類…………………………………………………………..5 2.1.3 磁性交換機制……………………………………………………….8 2.2 稀磁性半導體……………………………………………………………12 2.2.1 稀磁性半導體簡史…………………………………………………12 2.2.2 稀磁性半導體磁性機制來源………………………………………13 2.2.3 稀磁性半導體種類…………………………………………………15 2.3 二氧化鈰介紹…………………………………………………………….17 2.3.1 二氧化鈰之應用…………………………………………………..17 2.3.2 二氧化鈰基本性質…………………………………………………19 2.4 二氧化鈰之製備方式……………………………………………………22 2.4.1 物理法……………………………………………………………..22 2.4.2 化學法………………………………………………………………23 2.5 二氧化鈰之缺陷與磁性相關研究回顧…………………………………30 2.5.1 缺陷分析……………………………………………………………30 2.5.2 磁性研究……………………………………………………………32 第三章 實驗方法與儀器介紹……………………………………………………..62 3.1 二氧化鈰奈米顆粒之製備……………………………………………..62 3.1.1 藥品及氣體………………………………………………………..62 3.1.2 摻雜二氧化鈰製備流程…………………………………………..63 3.2 X光繞射分析……………………………………………………………..64 3.3 Raman光譜分析………………………………………………………….65 3.4 X光吸收光譜分析…………………………………………………………67 3.4.1 XAS分析介紹…………………………………………………….67 3.4.2 XAS分析量測方法………………………………………………..68 3.5 VSM與SQUID分析………………………………………………………71 3.6 紫外光/可見光分析光譜…………………………………………………..73 3.7掃描穿透式電子顯微鏡/電子能量損失光譜……………………………74 第四章 結果與討論………………………………………………………………..83 4.1摻雜元素之離子半徑對二氧化鈰奈米顆粒缺陷及磁性影響之研究 ….83 4.1.1 XRD分析…………………………………………………………83 4.1.2 Raman光譜分析…………………………………………………..84 4.1.3 XANES分析………………………………………………….. 85 4.1.4 STEM/EELS分析…………………………………………………89 4.1.5 UV-vis absorption spectra分析……………………………………91 4.1.6 磁性分析………………………………………………………….92 4.1.7 綜合討論………………………………………………………….93 4.2 摻雜元素之電子組態對二氧化鈰奈米顆粒之缺陷及磁性影響研究….111 4.2.1 光譜量測與缺陷結構建立……………………………………111 4.2.2 磁性分析………………………………………………………115 4.2.3 缺陷結構與磁性關係討論………………………………………116 4.3缺陷分布對二氧化鈰奈米顆粒之缺陷及磁性影響…………………….128 4.3.1 XANES分析……………………………………………………128 4.3.2 Raman分析………………………………………………………130 4.3.3 STEM/EELS分析………………………………………………131 4.3.4 磁性分析………………………………………………………132 4.3.5 綜合討論………………………………………………………132 第五章 結論………………………………………………………………………145 參考文獻………………………………………………………………………….147

[1]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, et al., "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices," Physical Review Letters, vol. 61, pp. 2472-2475, 11/21/ 1988.
[2]G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, vol. 39, pp. 4828-4830, 03/01/ 1989.
[3]S. Datta and B. Das, "Electronic analog of the electro‐optic modulator," Applied Physics Letters, vol. 56, pp. 665-667, 1990.
[4]R. C. O'Handley, "Modern Magnetic Materials " John Wiley & Sons inc, 2000.
[5]S. Chikazumi, "Physics of Ferromagnetism," Clarendon Press, 1997.
[6]C. Kittel, "Introduction to solid state physics (7th ed)," New York [u.a.]: Wiley, 1996.
[7]V. I. Litvinov and V. K. Dugaev, "Ferromagnetism in Magnetically Doped III-V Semiconductors," Physical Review Letters, vol. 86, pp. 5593-5596, 06/11/ 2001.
[8]H. Akai, "Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As," Physical Review Letters, vol. 81, pp. 3002-3005, 10/05/ 1998.
[9]D. R. G. Dana A. Schwartz, "Reversible 300K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor," Advanced Materials, vol. 16, p. 23, 2004.
[10]C. Zener, "Interaction Between the d Shells in the Transition Metals," Physical Review, vol. 81, pp. 440-444, 02/01/ 1951.
[11]胡裕民, "III-V 稀磁性半導體薄膜之研究與發展," 物理雙月刊, vol. 26, pp. 587-598, 2004.
[12]N. Zheng, "introduction to dilute magnetic semiconductors," Solid State II, 2008.
[13]H. Ohno, "Making Nonmagnetic Semiconductors Ferromagnetic," Science, vol. 281, pp. 951-956, 1998.
[14]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors," Science, vol. 287, pp. 1019-1022, February 11, 2000 2000.
[15]J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, "Donor impurity band exchange in dilute ferromagnetic oxides," Nat Mater, vol. 4, pp. 173-179, 02//print 2005.
[16]M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, "Thin films: Unexpected magnetism in a dielectric oxide," Nature, vol. 430, pp. 630-630, 08/05/print 2004.
[17]N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, "Ferromagnetism in transition-metal-doped TiO2 thin films," Physical Review B, vol. 70, p. 195204, 11/10/ 2004.
[18]M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, et al., "Room temperature ferromagnetic properties of (Ga, Mn)N," Applied Physics Letters, vol. 79, pp. 3473-3475, 2001.
[19]A. Alsaad and I. A. Qattan, "Comparative study of magnetic properties of dilute Fe doped with transition magnetic ions and GaN, InN doped with rare-earth magnetic ions," Physica B: Condensed Matter, vol. 432, pp. 77-83, 1/1/ 2014.
[20]H. Saeki, H. Tabata, and T. Kawai, "Magnetic and electric properties of vanadium doped ZnO films," Solid State Communications, vol. 120, pp. 439-443, 11/19/ 2001.
[21]W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. S. Seehra, "Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature," Journal of Applied Physics, vol. 91, pp. 8093-8095, 2002.
[22]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, et al., "Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide," Science, vol. 291, pp. 854-856, 2001.
[23]A. Trovarelli, "Catalytic Properties of Ceria and CeO2-Containing Materials," Catalysis Reviews, vol. 38, pp. 439-520, 1996/11/01 1996.
[24]S. H. Oh and C. C. Eickel, "Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts," Journal of Catalysis, vol. 112, pp. 543-555, 1988/08/01 1988.
[25]J. G. Nunan, H. J. Robota, M. J. Cohn, and S. A. Bradley, "Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity," Journal of Catalysis, vol. 133, pp. 309-324, 1992/02/01 1992.
[26]C. Serre, F. Garin, G. Belot, and G. Maire, "Reactivity of Pt/Al2O3 and Pt-CeO2 Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen," Journal of Catalysis, vol. 141, pp. 1-8, 1993/05/01 1993.
[27]J. C. Frost, "Junction effect interactions in methanol synthesis catalysts," Nature, vol. 334, pp. 577-580, 08/18/print 1988.
[28]S. E. Golunski, H. A. Hatcher, R. R. Rajaram, and T. J. Truex, "Origins of low-temperature three-way activity in Pt/CeO2," Applied Catalysis B: Environmental, vol. 5, pp. 367-376, 1995/04/01 1995.
[29]J. Kašpar, P. Fornasiero, and M. Graziani, "Use of CeO2-based oxides in the three-way catalysis," Catalysis Today, vol. 50, pp. 285-298, 4/29/ 1999.
[30]R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, et al., "Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process," Solid State Ionics, vol. 151, pp. 235-241, 11// 2002.
[31]T. Masui, M. Yamamoto, T. Sakata, H. Mori, and G.-y. Adachi, "Synthesis of BN-coated CeO2 fine powder as a new UV blocking material," Journal of Materials Chemistry, vol. 10, pp. 353-357, 2000.
[32]S. Tsunekawa, J.-T. Wang, Y. Kawazoe, and A. Kasuya, "Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites," Journal of Applied Physics, vol. 94, pp. 3654-3656, 2003.
[33]R. S. S. Tsunekawa, T. Ohsuna, A. Kasuya, H. Takahashi and K. Tohji, "Ultraviolet Absorption Spectra of CeO2 Nano-particles," Mater. Sci. Forum, vol. 315-317, pp. 439-445, 1999.
[34]G. R. B. a. H. Arakawa, "Cerium Dioxide as a Photocatalyst for Water Decomposition to O2 in the Presence of Ceaq 4+ and Feaq 3+ Species," J. Mol. Catal. A,, vol. 161, pp. 105-113, 2000.
[35]G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, and H. Arakawa, "The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors," Applied Catalysis A: General, vol. 205, pp. 117-128, 1/8/ 2001.
[36]J. M. Coronado, A. Javier Maira, A. Martı́nez-Arias, J. C. Conesa, and J. Soria, "EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts," Journal of Photochemistry and Photobiology A: Chemistry, vol. 150, pp. 213-221, 7/26/ 2002.
[37]N. Izu, W. Shin, N. Murayama, and S. Kanzaki, "Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis," Sensors and Actuators B: Chemical, vol. 87, pp. 95-98, 11/15/ 2002.
[38]N. Izu, W. Shin, and N. Murayama, "Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder," Sensors and Actuators B: Chemical, vol. 93, pp. 449-453, 8/1/ 2003.
[39]A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, et al., "Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing," Sensors and Actuators B: Chemical, vol. 95, pp. 145-150, 10/15/ 2003.
[40]P. A. Atanasov, T. Okato, R. I. Tomov, and M. Obara, "(1 1 0)Nd:KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition," Thin Solid Films, vol. 453–454, pp. 150-153, 4/1/ 2004.
[41]M. Shirakawa, J. Unno, K. Aizawa, M. Kusunoki, M. Mukaida, and S. Ohshima, "Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates," Physica C: Superconductivity, vol. 392–396, Part 2, pp. 1346-1352, 10// 2003.
[42]N. M. Sammes and Z. Cai, "Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials," Solid State Ionics, vol. 100, pp. 39-44, 1997/09/01 1997.
[43]L. J. Gauckler, M. Goぴdickemeier, and D. Schneider, "Nonstoichiometry and Defect Chemistry of Ceria Solid Solutions," Journal of Electroceramics, vol. 1, pp. 165-172, 1997// 1997.
[44]D. F. O. H. F. Mark, C. G. Overberger and G. T. Seaborg, "Encyclopedia of Chemical Technology," John Wiley & Sons, New York, vol. 5, 1970.
[45]J. a. L. R. E. K. A. Gschneidner, "Handbook on the Physics and Chemistry of Rare Earths," North-Holland, New York, Vol. 3, 1984.
[46]N. B. Kirk and J. V. Wood, "The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing," Journal of Materials Science, vol. 30, pp. 2171-2175, 1995// 1995.
[47]G. Z. Q. a. P. Q. X. L. Song, "Advances in Research on Applications and Synthesis Methods of CeO2 Nanoparticles," Rare Metal Mater. Eng., vol. 33, pp. 29-34, 2004.
[48]P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, "Structure-dependent electronic properties of nanocrystalline cerium oxide films," Physical Review B, vol. 68, p. 035104, 07/07/ 2003.
[49]M. Sugiura, "Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions," Catalysis Surveys from Asia, vol. 7, pp. 77-87, 2003// 2003.
[50]L. Yinglin, L. Zainovia, A. Azizan, and M.-D. Judith, "Size dependent ferromagnetism in cerium oxide (CeO2 ) nanostructures independent of oxygen vacancies," Journal of Physics: Condensed Matter, vol. 20, p. 165201, 2008.
[51]J. Campserveux and P. Gerdanian, "Etude thermodynamique de l'oxyde CeO2−x pour 1.5 <OCe < 2," Journal of Solid State Chemistry, vol. 23, pp. 73-92, 1978/01/15 1978.
[52]C. Xiaobo, L. Guangshe, S. Yiguo, Q. Xiaoqing, L. Liping, and Z. Zhigang, "Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca 2+ doping," Nanotechnology, vol. 20, p. 115606, 2009.
[53]W. H. Lee and P. Shen, "Laser Ablation Deposition of CeO2−x Epitaxial Domains on Glass," Journal of Solid State Chemistry, vol. 166, pp. 197-202, 2002/06/01 2002.
[54]V. Boffa, T. Petrisor, S. Ceresara, L. Ciontea, F. Fabbri, and P. Scardi, "Laser-ablation deposition of CeO2 thin films on biaxially textured nickel substrates," Physica C: Superconductivity, vol. 312, pp. 202-212, 2/1/ 1999.
[55]L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Y. Zhu, D. O. Welch, et al., "Oxidation state and lattice expansion of ${\mathrm{CeO}}_{2-x}$ nanoparticles as a function of particle size," Physical Review B, vol. 69, p. 125415, 03/24/ 2004.
[56]B. Skårman, T. Nakayama, D. Grandjean, R. E. Benfield, E. Olsson, K. Niihara, et al., "Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation:  An HREM, EFTEM, XPS, and High-Energy Diffraction Study," Chemistry of Materials, vol. 14, pp. 3686-3699, 2002/09/01 2002.
[57]W.-C. Tsai and T.-Y. Tseng, "Structural and electrical properties of cerium dioxide films grown by RF magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 8, pp. 313-320, 1997// 1997.
[58]M. Hirano and E. Kato, "Hydrothermal Synthesis of Cerium(IV) Oxide," Journal of the American Ceramic Society, vol. 79, pp. 777-780, 1996.
[59]J. Liu, L. Wang, H. Wu, L. Mo, H. Lou, and X. Zheng, "Synthesis and characterization of CeO2 by the hydrothermal method assisted by carboxymethylcellulose sodium," Reaction Kinetics and Catalysis Letters, vol. 98, p. 311, 2009// 2009.
[60]D.-S. Bae, B. Lim, B.-I. Kim, and K.-S. Han, "Synthesis and characterization of ultrafine CeO2 particles by glycothermal process," Materials Letters, vol. 56, pp. 610-613, 10// 2002.
[61]T. Masui, K. Fujiwara, K.-i. Machida, G.-y. Adachi, T. Sakata, and H. Mori, "Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles," Chemistry of Materials, vol. 9, pp. 2197-2204, 1997/10/01 1997.
[62]S. Srivatsan, J. L. Keith, T. D. Reza, and M. P. Paranthaman, "Reverse micellar synthesis of cerium oxide nanoparticles," Nanotechnology, vol. 16, p. 1960, 2005.
[63]H. Xu, L. Gao, H. Gu, J. Guo, and D. Yan, "Synthesis of Solid, Spherical CeO2 Particles Prepared by the Spray Hydrolysis Reaction Method," Journal of the American Ceramic Society, vol. 85, pp. 139-144, 2002.
[64]B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, and A. Kachouane, "Structural and optical properties of CeO2 thin films prepared by spray pyrolysis," Thin Solid Films, vol. 379, pp. 23-27, 12/8/ 2000.
[65]L. Mädler, W. J. Stark, and S. E. Pratsinis, "Flame-made Ceria Nanoparticles," Journal of Materials Research, vol. 17, pp. 1356-1362, 2002/006/001 2002.
[66]M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, "Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles," Applied Physics Letters, vol. 94, p. 152511, 2009.
[67]L. Yin, Y. Wang, G. Pang, Y. Koltypin, and A. Gedanken, "Sonochemical Synthesis of Cerium Oxide Nanoparticles—Effect of Additives and Quantum Size Effect," Journal of Colloid and Interface Science, vol. 246, pp. 78-84, 2002/02/01 2002.
[68]Y. X. Li, X. Z. Zhou, Y. Wang, and X. Z. You, "Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide," Materials Letters, vol. 58, pp. 245-249, 1// 2004.
[69]T. Tsuzuki and P. G. McCormick, "Synthesis of Ultrafine Ceria Powders by Mechanochemical Processing," Journal of the American Ceramic Society, vol. 84, pp. 1453-1458, 2001.
[70]S. C. S. S. Gopalan, "Mechanochemical synthesis of nano-sized CeO2," Scripta Materialia, vol. 42, p. 993, 2000.
[71]G. L. X. Wang, Y. Liu and S. Duan, "Cerium Oxide Film Prepared from Molten Salts," Rare Metals, vol. 20, pp. 95-100, 2001.
[72]Y. Zhou, R. J. Phillips, and J. A. Switzer, "Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders," Journal of the American Ceramic Society, vol. 78, pp. 981-985, 1995.
[73]F. Czerwinski and J. A. Szpunar, "The Nanocrystalline Ceria Sol-Gel Coatings for High Temperature Applications," Journal of Sol-Gel Science and Technology, vol. 9, pp. 103-114, 1997// 1997.
[74]連昭晴, "鐵/金核殼型磁性複合奈米粒子之製備與應用," 國立成功大學化學工程學系, 2004.
[75]S.-Y. Chen, Y.-H. Lu, T.-W. Huang, D.-C. Yan, and C.-L. Dong, "Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method," The Journal of Physical Chemistry C, vol. 114, pp. 19576-19581, 2010/11/25 2010.
[76]張宏毅, "二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性," 國立成功大學化學工程學系博士論文, 2005.
[77]X.-D. Zhou, W. Huebner, and H. U. Anderson, "Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2," Applied Physics Letters, vol. 80, pp. 3814-3816, 2002.
[78]P.-L. Chen and I. W. Chen, "Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method," Journal of the American Ceramic Society, vol. 76, pp. 1577-1583, 1993.
[79]J.-G. Li, T. Ikegami, Y. Wang, and T. Mori, "Reactive Ceria Nanopowders via Carbonate Precipitation," Journal of the American Ceramic Society, vol. 85, pp. 2376-2378, 2002.
[80]S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, and T. Fukuda, "Structural study on monosize CeO2-x nano-particles," Nanostructured Materials, vol. 11, pp. 141-147, 2// 1999.
[81]J. L. G. Fierro, S. Mendioroz, and A. M. Olivan, "Surface chemistry of cerium oxide prepared by an isobaric thermal procedure," Journal of Colloid and Interface Science, vol. 107, pp. 60-69, 1985/09/01 1985.
[82]J. Paier, C. Penschke, and J. Sauer, "Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment," Chemical Reviews, vol. 113, pp. 3949-3985, 2013/06/12 2013.
[83]J.-F. Jerratsch, X. Shao, N. Nilius, H.-J. Freund, C. Popa, M. V. Ganduglia-Pirovano, et al., "Electron Localization in Defective Ceria Films: A Study with Scanning-Tunneling Microscopy and Density-Functional Theory," Physical Review Letters, vol. 106, p. 246801, 06/14/ 2011.
[84]H.-Y. Li, H.-F. Wang, X.-Q. Gong, Y.-L. Guo, Y. Guo, G. Lu, et al., "Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications," Physical Review B, vol. 79, p. 193401, 05/06/ 2009.
[85]M. V. Ganduglia-Pirovano, J. L. F. Da Silva, and J. Sauer, "Density-Functional Calculations of the Structure of Near-Surface Oxygen Vacancies and Electron Localization on CeO2(111)," Physical Review Letters, vol. 102, p. 026101, 01/13/ 2009.
[86]L. Pauling, "THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS," Journal of the American Chemical Society, vol. 51, pp. 1010-1026, 1929/04/01 1929.
[87]L. Pauling, "Atomic Radii and Interatomic Distances in Metals," Journal of the American Chemical Society, vol. 69, pp. 542-553, 1947/03/01 1947.
[88]I. D. Brown and D. Altermatt, "Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database," Acta Crystallographica Section B, vol. 41, pp. 244-247, 1985.
[89]I. D. Brown, "Recent Developments in the Methods and Applications of the Bond Valence Model," Chemical Reviews, vol. 109, pp. 6858-6919, 2009/12/09 2009.
[90]E. Shoko, M. F. Smith, and H. M. Ross, "Charge distribution near bulk oxygen vacancies in cerium oxides," Journal of Physics: Condensed Matter, vol. 22, p. 223201, 2010.
[91]A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, et al., "Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature," Applied Physics Letters, vol. 88, p. 142511, 2006.
[92]W. Qi-Ye, Z. Huai-Wu, S. Yuan-Qiang, Y. Qing-Hui, Z. Hao, and Q. X. John, "Room-temperature ferromagnetism in pure and Co doped CeO2 powders," Journal of Physics: Condensed Matter, vol. 19, p. 246205, 2007.
[93]A. Sundaresan and C. N. R. Rao, "Ferromagnetism as a universal feature of inorganic nanoparticles," Nano Today, vol. 4, pp. 96-106, 2// 2009.
[94]M. S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.-S. Kil, D.-W. Park, et al., "Hydrothermal synthesis and indication of room temperature ferromagnetism in CeO2 nanowires," Materials Letters, vol. 65, pp. 3098-3101, 10// 2011.
[95]S. Phokha, E. Swatsitang, and S. Maensiri, "Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition," Electronic Materials Letters, vol. 11, pp. 1012-1020, 2015// 2015.
[96]R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing, et al., "Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2," Applied Physics Letters, vol. 97, p. 172503, 2010.
[97]V. Fernandes, P. Schio, A. J. A. d. Oliveira, W. A. Ortiz, P. Fichtner, L. Amaral, et al., "Ferromagnetism induced by oxygen and cerium vacancies above the percolation limit in CeO2," Journal of Physics: Condensed Matter, vol. 22, p. 216004, 2010.
[98]S.-Y. Chen, C.-H. Tsai, M.-Z. Huang, D.-C. Yan, T.-W. Huang, A. Gloter, et al., "Concentration Dependence of Oxygen Vacancy on the Magnetism of CeO2 Nanoparticles," The Journal of Physical Chemistry C, vol. 116, pp. 8707-8713, 2012/04/19 2012.
[99]Z. D.-M. M. Radović, N. Paunović, M. Šćepanović, B. Matović and Z.V. Popović, "Effect of Fe2+ (Fe3+) Doping on Structural Properties οf CeO2 Nanocrystals," Acta Physica Polonica A, vol. 116, p. 84, 2009.
[100]H. F. Xu and H. Li, "The effect of CO-doped on the room-temperature ferromagnetism of CeO2 nanorods," Journal of Magnetism and Magnetic Materials, vol. 377, pp. 272-275, 3/1/ 2015.
[101]S.-Y. Chen, K.-W. Fong, T.-T. Peng, C.-L. Dong, A. Gloter, D.-C. Yan, et al., "Enhancement of Ferromagnetism in CeO2 Nanoparticles by Nonmagnetic Cr3+ Doping," The Journal of Physical Chemistry C, vol. 116, pp. 26570-26576, 2012/12/20 2012.
[102]A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978-982, 11/15/ 1939.
[103]D. C. K. a. R. Prins, "X-Ray Absorption : Principles, Application, Techniques of EXAFS,SEXAFS, SEXAFS and XANES," Chem. Analysis, vol. 92, 1988.
[104]D. E. Sayers, E. A. Stern, and F. W. Lytle, "New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray Absorption Fine Structure," Physical Review Letters, vol. 27, pp. 1204-1207, 11/01/ 1971.
[105]B. K. Teo, "EXAFS , Basic Principle and Data Analysis," Springer-Verlag, Berlin, 1986.
[106]Z. V. Popović, Z. Dohčević-Mitrović, M. Šćepanović, M. Grujić-Brojčin, and S. Aškrabić, "Raman scattering on nanomaterials and nanostructures," Annalen der Physik, vol. 523, pp. 62-74, 2011.
[107]J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, "Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb," Journal of Applied Physics, vol. 76, pp. 2435-2441, 1994.
[108]B. Choudhury and A. Choudhury, "Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping," Current Applied Physics, vol. 13, pp. 217-223, 1// 2013.
[109]A. Nakajima, A. Yoshihara, and M. Ishigame, "Defect-induced Raman spectra in doped CeO2," Physical Review B, vol. 50, pp. 13297-13307, 11/01/ 1994.
[110]T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, et al., "Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy," Journal of Physical Chemistry C, vol. 113, pp. 19789-19793, Nov 2009.
[111]L. A. J. Garvie and P. R. Buseck, "Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy," Journal of Physics and Chemistry of Solids, vol. 60, pp. 1943-1947, 12// 1999.
[112]C. C. Fulton, L. F. Edge, G. Lucovsky, and J. Lüning, "A study of conduction band edge states in complex oxides by X-ray absorption spectroscopy," Radiation Physics and Chemistry, vol. 75, pp. 1934-1938, 11// 2006.
[113]D. R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie, et al., "Oxygen vacancy ordering in heavily rare-earth-doped ceria," Applied Physics Letters, vol. 89, p. 171911, 2006.
[114]P. Nachimuthu, W.-C. Shih, R.-S. Liu, L.-Y. Jang, and J.-M. Chen, "The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy," Journal of Solid State Chemistry, vol. 149, pp. 408-413, 2000/02/01 2000.
[115]W. Lee, S.-Y. Chen, Y.-S. Chen, C.-L. Dong, H.-J. Lin, C.-T. Chen, et al., "Defect Structure Guided Room Temperature Ferromagnetism of Y-Doped CeO2 Nanoparticles," The Journal of Physical Chemistry C, vol. 118, pp. 26359-26367, 2014/11/13 2014.
[116]S.-Y. Chen, R.-J. Chen, W. Lee, C.-L. Dong, and A. Gloter, "Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles," Physical Chemistry Chemical Physics, vol. 16, pp. 3274-3281, 2014.
[117]D. G. Stroppa, C. J. Dalmaschio, L. Houben, J. Barthel, L. A. Montoro, E. R. Leite, et al., "Analysis of Dopant Atom Distribution and Quantification of Oxygen Vacancies on Individual Gd-Doped CeO2 Nanocrystals," Chemistry – A European Journal, vol. 20, pp. 6288-6293, 2014.
[118]L. Wu, S. Dey, M. Gong, F. Liu, and R. H. R. Castro, "Surface Segregation on Manganese Doped Ceria Nanoparticles and Relationship with Nanostability," The Journal of Physical Chemistry C, vol. 118, pp. 30187-30196, 2014/12/26 2014.
[119]S.-J. L. Kang, "12 - SINTERING ADDITIVES AND DEFECT CHEMISTRY," in Sintering, ed Oxford: Butterworth-Heinemann, 2005, pp. 173-179.
[120]D. McLean, "Grain Boundaries in Metals," Oxford University Press:London, 1957.
[121]R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. 32, pp. 751-767, 1976.
[122]M. Nolan, "Charge Compensation and Ce3+ Formation in Trivalent Doping of the CeO2(110) Surface: The Key Role of Dopant Ionic Radius," The Journal of Physical Chemistry C, vol. 115, pp. 6671-6681, 2011/04/14 2011.
[123]M. Nakayama and M. Martin, "First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations," Physical Chemistry Chemical Physics, vol. 11, pp. 3241-3249, 2009.
[124]S. A. Ansari, M. M. Khan, M. O. Ansari, S. Kalathil, J. Lee, and M. H. Cho, "Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications," RSC Advances, vol. 4, pp. 16782-16791, 2014.
[125]Y.-W. Zhang, R. Si, C.-S. Liao, C.-H. Yan, C.-X. Xiao, and Y. Kou, "Facile Alcohothermal Synthesis, Size-Dependent Ultraviolet Absorption, and Enhanced CO Conversion Activity of Ceria Nanocrystals," The Journal of Physical Chemistry B, vol. 107, pp. 10159-10167, 2003/09/01 2003.
[126]S. Tsunekawa, T. Fukuda, and A. Kasuya, "Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles," Journal of Applied Physics, vol. 87, pp. 1318-1321, 2000.
[127]D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, "Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures," The Journal of Physical Chemistry B, vol. 103, pp. 630-640, 1999/01/01 1999.
[128]K. Ackland, L. M. A. Monzon, M. Venkatesan, and J. M. D. Coey, "Magnetism of Nanostructured CeO2," IEEE Transactions on Magnetics, vol. 47, pp. 3509-3512, 2011.
[129]V. Fernandes, R. J. O. Mossanek, P. Schio, J. J. Klein, A. J. A. de Oliveira, W. A. Ortiz, et al., "Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2," Physical Review B, vol. 80, p. 035202, 07/13/ 2009.
[130]M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, et al., "On the origin of ferromagnetism in CeO2 nanocubes," Applied Physics Letters, vol. 93, p. 062505, 2008.
[131]C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, et al., "Magnetism in dilute magnetic oxide thin films based on Sn2," Physical Review B, vol. 74, p. 115307, 09/12/ 2006.
[132]R. S. Lubna, A. Bakhtyar, Z. Hao, W. G. Wang, Y. Q. Song, H. W. Zhang, et al., "Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co–CeO2," Journal of Physics: Condensed Matter, vol. 21, p. 486004, 2009.
[133]V. Fernandes, P. Schio, A. J. A. de Oliveira, W. H. Schreiner, J. Varalda, and D. H. Mosca, "Loss of magnetization induced by doping in CeO2 films," Journal of Applied Physics, vol. 110, p. 113902, 2011.
[134]J. L. García-Muñoz, C. Frontera, A. J. Barón-González, S. Valencia, J. Blasco, R. Feyerherm, et al., "Valence transition in (Pr,Ca)CoO3 cobaltites: Charge migration at the metal-insulator transition," Physical Review B, vol. 84, p. 045104, 07/05/ 2011.
[135]L. Douillard, M. Gautier, N. Thromat, M. Henriot, M. J. Guittet, J. P. Duraud, et al., "Local electronic structure of Ce-doped Y2O3: An XPS and XAS study," Physical Review B, vol. 49, pp. 16171-16180, 06/15/ 1994.
[136]N. Paunovic, Z. Dohcevic-Mitrovic, R. Scurtu, S. Askrabic, M. Prekajski, B. Matovic, et al., "Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals," Nanoscale, vol. 4, pp. 5469-5476, 2012.
[137]K. Ahn, D. S. Yoo, D. H. Prasad, H.-W. Lee, Y.-C. Chung, and J.-H. Lee, "Role of Multivalent Pr in the Formation and Migration of Oxygen Vacancy in Pr-Doped Ceria: Experimental and First-Principles Investigations," Chemistry of Materials, vol. 24, pp. 4261-4267, 2012/11/13 2012.
[138]Y. Tang, H. Zhang, L. Cui, C. Ouyang, S. Shi, W. Tang, et al., "First-principles investigation on redox properties of M-doped CeO2, Mn, Pr, Sn, Zr," Physical Review B, vol. 82, p. 125104, 09/03/ 2010.
[139]A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, "Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides," Physical Review B, vol. 74, p. 161306, 10/20/ 2006.

QR CODE