簡易檢索 / 詳目顯示

研究生: MUHAMMAD SYAHRIL MUBAROK
MUHAMMAD SYAHRIL MUBAROK
論文名稱: 含限制條件預測型控制應用在寬廣控速範圍的無轉軸偵測內藏式永磁同步電動機驅動系統
CONSTRAINED PREDICTIVE CONTROL FOR WIDE ADJUSTABLE SPEED SENSORLESS IPMSM DRIVE SYSTEMS
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
徐 國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
陳偉倫
Woei-Luen Chen
劉益華
Yi-Hua Liu
劉添華
Tian-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 158
中文關鍵詞: 電流斜率法及時參數估測最大轉矩/安培控制弱磁控制含限制條件的預測型控制內藏式永磁同步電動機
外文關鍵詞: Current-slope method, on-line parameter estimation, MTPA, flux-weakening control, constrained predictive control, IPMSM
相關次數: 點閱:429下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


TABLE OF CONTENTS ABSTRACT i 中文摘要 ii DEDICATION iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v NOMENCLATURE ix LIST OF FIGURES xiv LIST OF TABLES xvii CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Literature review 2 1.3 Contributions of the dissertation 4 1.4 Outline 5 CHAPTER II INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 6 2.1 Introduction 6 2.2 Structures and characteristics of PMSMs 6 2.2.1 Stator structures 7 2.2.2 Rotor Structures 8 2.3 Mathematical model of IPMSMs 10 2.3.1 Electrical model of IPMSMs 10 2.3.2 Mechanical model of IPMSMs 14 2.3.3 Equivalent circuit of IPMSMs 14 CHAPTER III CURRENT-SLOPE-BASED ROTOR POSITION ESTIMATION 16 3.1 Introduction 16 3.2 Inverter 17 Page 3.3 Space vector pulse-width modulation 18 3.4 SVPWM with an extension and compensation 21 3.5 Current-slope computations 22 3.6 Rotor position estimation 23 3.6.1 Computation of current-slopes 24 3.6.2 Estimation of rotor position 34 3.7 Rotor speed estimation 39 CHAPTER IV PARAMETER ESTIMATION OF IPMSMS 42 4.1 Introduction 42 4.2 Off-line parameter measurement of IPMSMs 43 4.2.1 The d-q axis inductance measurement 43 4.2.2 The permanent-magnet flux measurement 46 4.3 On-line parameter estimation of IPMSMs 47 4.3.1 The d-q axis inductance estimation 47 4.3.2 The permanent-magnet flux estimation 49 CHAPTER V MAXIMUM TORQUE/AMPERE CONTROL AND FLUX WEAKENING CONTROL 54 5.1 Introduction 54 5.2 Maximum torque/ampere control 54 5.3 Flux-weakening control 56 CHAPTER VI CONSTRAINED MODEL PREDICTIVE CONTROLLERS 60 6.1 Introduction 60 6.2 Constrained predictive current controller design 61 6.2.1 CPCC design for discrete model of IPMSMs 61 6.2.2 Augmented state-space current model of IPMSMs 65 6.2.3 The constraints for CPCC 69 6.3 Constrained predictive speed controller design 70 6.3.1 CPSC design for discrete model of IPMSMs 70 6.3.2 Augmented state-space speed model of IPMSMs 71 6.3.3 The constraints for CPSC 74 6.4 Optimization with input constraints 75 6.5 External load estimator 81 CHAPTER VII IMPLEMENTATION 85 7.1 Introduction 85 7.2 Hardware 86 7.2.1 Three-phase inverter 88 7.2.2 Gate drivers 88 7.2.3 Low-voltage DC power supply 89 7.2.4 Digital signal processor 89 7.2.4.1 CPU 90 7.2.4.2 Enhances PWM (EPWM) module 90 7.2.4.3 Enhances QEP (EQEP) module 91 7.2.4.4 Enhances analog-to-digital converter (ADC) module 91 7.2.4.5 Serial peripheral interface (SPI) module 91 7.2.5 Current sensing circuit 91 7.2.6 A/D converter 92 7.2.7 Encoder circuit 93 7.3 Software algorithms 93 7.3.1 Main program 94 7.3.2 Interrupt programs 95 CHAPTER VIII EXPERIMENTAL RESULTS 100 8.1 Introduction 100 8.2 Experimental results 101 8.2.1 Rotor position estimation and speed estimation 101 8.2.2 Parameter estimation 107 8.2.3 MTPA control and flux-weakening control 111 8.2.4 Constrained predictive controllers 114 CHAPTER IX CONCLUSIONS AND FUTURE RESEARCH 127 9.1 Conclusions 127 9.2 Future research 128 REFERENCES 129

REFERENCES

[1] R. Krisnan, Electric Motor Drives: Modelling, Analysis, and Control, Prentice Hall, 2001.
[2] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, "Comparison of induction and PM synchronous motor drives for EV application including design examples," IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Nov./Dec. 2012.
[3] G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 803-811, Feb. 2012.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[5] W. Jiang, S. Feng, Z. Zhang, J. Zhang, and Z. Zhang, “Study of efficiency characteristics of interior permanent magnet synchronous motors,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, Nov. 2018.
[6] J. L. Chen and T. H. Liu, “Implementation of a predictive controller for a sensorless interior permanent-magnet synchronous motor drive system,” IET Elect. Power Appl., vol. 6, no. 8, pp. 513-525. Sept. 2012.
[7] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives - a review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830-5842, July 2020.
[8] S. Medjmadj, D. Diallo, M. Mostefai, C. Delpha, and A. Arias, "PMSM drive position estimation: contribution to the high-frequency injection voltage selection issue," IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 349-358, Mar. 2015.

[9] X. Luo, Q. Tang, A. Shen, and Q. Zhang, “PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2294-2303, April 2016.
[10] J. Lu, Y. Hu, X. Zhang, Z. Wang, J. Liu, and C. Gan, "High-frequency voltage injection sensorless control technique for IPMSMs fed by a three-phase four-switch inverter with a single current sensor,” IEEE ASME Trans. Mechatron., vol. 23, no. 2, pp. 758-768, Apr. 2018.
[11] H. Li, X. Zhang, S. Yang, and S. Liu, “Unified graphical model of high-frequency signal injection methods for PMSM sensorless control,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4411-4421, June 2020.
[12] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, "Back EMF sensorless-control algorithm for high-dynamic performance PMSM," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, Jun. 2010.
[13] J. Kim, I. Jeong, K. Nam, J. Yang, and T. Hwang, “Sensorless control of PMSM in a high-speed region considering iron loss,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6151-6159, Oct. 2015.
[14] T. Wang, J. Huang, M. Ye, J. Chen, W. Kong, M. Kang, and M. Yu, “An EMF observer for PMSM sensorless drives adaptive to stator resistance and rotor flux linkage,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 1899-1913, Sept. 2019.
[15] A. T. Woldegiorgis, X. Ge, S. Li, and M. Hassan, "Extended sliding mode disturbance observer-based sensorless control of IPMSM for medium and high-speed range considering railway application," IEEE Access, vol. 7, pp. 175302-175312, 2019.
[16] M. Wei and T. H. Liu, "A high-performance sensorless position control system of a synchronous reluctance motor using dual current-slope estimating technique," IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3411-3426, Sep. 2012.
[17] X. Luo, Q. Tang, A. Shen, H. Shen, and J. Xu, "A combining FPE and additional test vectors hybrid strategy for IPMSM sensorless control," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6104-6113, Jul. 2018.
[18] A. Vogelsberger, S. Grubic, T. G. Habetler, and T. M. Wolbank, "Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of AC machines," IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 365-374, Jan. 2010.
[19] S. K Tseng, T. H. Liu, and J. L. Chen, "Implementation of a sensorless interior permanent magnet synchronous drive based on current deviations of pulse-width modulation switching", IET Electr. Pow. Appl., vol. 9, no. 2, pp. 95-106, Mar. 2015.
[20] Y. Hua, M. Sumner, G. Asher, Q. Gao, and K. Saleh, "Improved sensorless control of a permanent magnet machine using fundamental pulse width modulation excitation", IET Electr. Power Appl., vol. 5, no. 4, pp. 359-370, Apr. 2011.
[21] M. X. Bui, D. Guan, D. Xiao, and M. F. Rahman, "A modified sensorless control scheme for interior permanent magnet synchronous motor over zero to rated speed range using current derivative measurements," IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 102-113, Jan. 2019.
[22] C. Wu, Z. Chen, and Q. Chen, "An optimized asymmetric pulsewidth modulation for sensorless control of permanent magnet synchronous machines," IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1389-1399, Feb. 2022.
[23] C. Candelo-Zuluaga, J. R. Riba, and A. Garcia, "PMSM parameter estimation for sensorless FOC based on differential power factor," IEEE Trans. Instrum. Meas., vol. 70, pp. 1-12, 2021.
[24] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, Wiley, 2009.
[25] C. C. Yu, Autotuning of PID Controllers-A Relay Feedback Approach, 2nd ed., Springer, London, UK, 2016.
[26] M. A. M. Cheema, J. E. Fletcher, M. Farshadnia, D. Xiao, and M. F. Rahman, “Combined speed and direct thrust force control of linear permanent-magnet synchronous motors with sensorless speed estimation using a sliding-mode control with integral action,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3489-3501, May 2017.

[27] Y. C. Liu, S. Laghrouche, D. Depernet, A. Djerdir, and M. Cirrincione, “Disturbance-observer-based complementary sliding-mode speed control for PMSM drives: a super-twisting sliding-mode observer-based approach,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 5, pp. 5416-5428, Oct. 2021.
[28] V. Repecho, J. B. Waqar, D. Biel, and A. Dòria-Cerezo, “Zero speed sensorless scheme for permanent magnet synchronous machine under decoupled sliding-mode control,” IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1288-1297, Feb. 2022.
[29] M. Morawiec, “The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter,” IEEE Trans. Industr. Inform., vol. 9, no. 2, pp. 1047-1055, May 2013.
[30] Y. Yao, Y. Huang, F. Peng, and J. Dong, “Position sensorless drive and online parameter estimation for surface-mounted PMSMS based on adaptive full-state feedback control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7341-7355, July 2020.
[31] J. Xing, Z. Qin, C. Lin, and X. Jiang, “Research on startup process for sensorless control of PMSMS based on I-F method combined with an adaptive compensator,” IEEE Access, vol. 8, pp. 70812-70821, 2020.
[32] M. Preindl and E. Schaltz, “Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4087-4095, Sept. 2011.
[33] R. Sreejith and B. Singh, “Sensorless predictive current control of PMSM EV drive using DSOGI-FLL based sliding mode observer,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 5537-5547, July 2021.
[34] X. Luo, A. Shen, Q. Tang, J. Liu, and J. Xu, “Two-step continuous-control set model predictive current control strategy for SPMSM sensorless drives,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1110-1120, June 2021.
[35] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, "Model predictive control for power converters and drives: advances and trends,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 935-947, Feb. 2017.
[36] J. M. Maciejowski, Predictive Control with Constraints. Prentice Hall, New York, USA, 2002.
[37] J. Rodriguez, C. Garcia, A. Mora, F. Flores-Bahamode, P. Acuna, M. Novak, Y, Zhang, L. Tarisciotti, S. A. Davari, Z. Zhang, F. Wang, M. Norambuena, T. Dragicevic, F. Blaabjerg, T. Geyer, R. Kennel, D. A. Khaburi, M. Abdelrahem, Z. Zhang, N. Mijatovic, and R. P. Aguilera, “Latest advances of model predictive control in electrical drives-part I: basic concepts and advanced strategies,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3927-3942, April 2022.
[38] W. C. Wang, T. H. Liu, and Y. Syaifudin, "Model predictive controller for a micro-PMSM-based five-finger control system," IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3666-3676, Jun. 2016.
[39] M. S. Mubarok and T. H. Liu, "Implementation of predictive controllers for matrix-converter-based interior permanent magnet synchronous motor position control systems," IEEE Journal of Emerg. and Select. Topics in Pow. Electron., vol. 7, no. 1, pp. 261-273, Mar. 2019.
[40] Z. Li, F. Wang, D. Ke, J. Li, and W. Zhang, "Robust continuous model predictive speed and current control for PMSM with adaptive integral sliding-mode approach," IEEE Trans. Power Electron, vol. 36, no. 12, pp. 14398-14408, Dec. 2021.
[41] S. Gao, Y. Wei, D. Zhang, H. Qi, Y. Wei, and Z. Yang, "Model-free hybrid parallel predictive speed control based on ultralocal model of PMSM for electric vehicles," IEEE Trans. Ind. Electron, vol. 69, no. 10, pp. 9739-9748, Oct. 2022.
[42] C. Jia, X. Wang, Y. Liang, and K. Zhou, "Robust current controller for IPMSM drives based on explicit model predictive control with online disturbance observer,” IEEE Access, vol. 7, pp. 45898-45910, 2019.
[43] J. Chen, Y. Qin, A. M. Bozorgi, and M. Farasat, "Low complexity dual-vector model predictive current control for surface-mounted permanent magnet synchronous motor drives," IEEE Journal of Emerg. and Select. Topics in Pow. Electron., vol. 8, no. 3, pp. 2655-2663, Sep. 2020.
[44] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, "Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification," IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, Mar.-Apr. 2011.
[45] M. A. Hamida, J. De Leon, A. Glumineau, and R. Boisliveau, "An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification," IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, Feb. 2013.
[46] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. Jung, "Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine," IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, Jun. 2017.
[47] O. C. Kivanc and S. B. Ozturk, "Sensorless PMSM drive based on stator feedforward voltage estimation improved with MRAS multiparameter estimation," IEEE/ASME Trans. Mech., vol. 23, no. 3, pp. 1326-1337, June 2018.
[48] Y. Yao, Y. Huang, F. Peng, and J. Dong, "Position sensorless drive and online parameter estimation for surface-mounted PMSMs based on adaptive full-state feedback control," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7341-7355, Jul. 2020.
[49] Q. Tang, A. Shen, P. Luo, H. Shen, W. Li, and X. He, "IPMSMs sensorless MTPA control based on virtual q-axis inductance by using virtual high-frequency signal injection," IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 136-146, Jan. 2020.
[50] C. Wu, Y. Zhao, and M. Sun, "Enhancing low-speed sensorless control of PMSM using phase voltage measurements and online multiple parameter identification," IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10700-10710, Oct. 2020.
[51] J. Rodriguez, C. Garcia, A. Mora, S. A. Davari, J. Rodas, D. F. Valencia, M. Elmourshedy, F. Wang, K. Zuo, L. Terisciotti, F. Flores-Bahamonde, W. Xu, Z. Zhang, Y. Zhang, M. Norambuena, A. Emadi, T. Geyer, R. Kennel, T. Dragicevic, D. A. Khaburi, and N. Mijatovic, “Latest advances of model predictive control in electrical drives-part II: applications and benchmarking with classical control methods,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5047-5061, May 2022.
[52] L. Rovere, A. Formentini, A. Gaeta, P. Zanchetta, and M. Marchesoni, “Sensorless finite-control set model predictive control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5921-5931, Sept. 2016.
[53] S. Nalakath, Y. Sun, M. Preindl, and A. Emadi, “Optimization-based position sensorless finite control set model predictive control for IPMSMs,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8672-8682, Oct. 2018.
[54] Z. Chen, J. Qiu, and M. Jin, “Prediction-error-driven position estimation method for finite-control-set model predictive control of interior permanent-magnet synchronous motors,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 1, pp. 282-295, March 2019.
[55] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors,” IEEE Trans. Industr. Inform., vol. 14, no. 4, pp. 1334-1346, April 2018.
[56] T. Tarczewski and L. M. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, June 2016.
[57] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded model predictive control with certified real-time optimization for synchronous motors,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 893-900, March 2021.
[58] F. Giri, AC Electric Motors Control: Advanced Design Techniques and Applications, John Wiley & Sons, 2013.
[59] J. Pyrhönen, V. Hrabovcová, and R. S. Semken., Electrical Machine Drives Control: An Introduction, John Wiley & Sons, 2016.
[60] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, 2002.
[61] P. Sekerak, V. Hrabovcova, J. Pyrhonen, L. Kalamen, P. Rafajdus, and M. Onufer, "Comparison of synchronous motors with different permanent magnet and winding types," IEEE Trans. Magn., vol. 49, no. 3, pp. 1256-1263, March 2013.
[62] L. Gao, Z. Cai, Y. Liang, D. Wang, Q. Niu, and J. Li, "An improved analytical model of magnetic field in surface-mounted permanent magnet synchronous motor with magnetic pole cutting," IEEE Access, vol. 9, pp. 142804-142814, 2021.
[63] S. Duan, L. Zhou, and J. Wang, "Flux weakening mechanism of interior permanent magnet synchronous machines with segmented permanent magnets," IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 1-5, June 2014.
[64] N. Mohan., Advanced Electric Drives: Analysis, Control, and Modeling Using MATLAB/Simulink., John Wiley & Sons, 2014.
[65] B. Jacob and M. R. Baiju, "A new space vector modulation scheme for multilevel inverters which directly vector quantize the reference space vector," IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 88-95, Jan. 2015.
[66] M. H. Rashid., Power Electronics Handbook., Academic Press, 2001.
[67] J. Chen, Y. He, S. U. Hasan, and J. Liu, "A comprehensive study on equivalent modulation waveforms of the SVM sequence for three-level inverters," IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7149-7158, Dec. 2015.
[68] B. Shuang and Z. Q. Zhu, "Simultaneous sensorless rotor position and torque estimation for IPMSM at standstill and low speed based on high-frequency square wave voltage injection,” IEEE Trans. Ind. Electron. vol. 69, no. 9, pp. 8791-8802, Sept. 2022.
[69] B. Nanda and P. Kumar, "Qualitative and quantitative analysis of different inductance measurement techniques for IPM synchronous machines," IEEE Trans. Energy Convers., vol. 36, no. 4, pp. 3305-3316, Dec. 2021.
[70] V. Bobek, “PMSM electrical parameters measurement,” Freescale Semiconductor, vol. 7, no. 8, p. 13, 2013.
[71] M. S. Mubarok and T. H. Liu, “An adjustable wide-range speed-control method for sensorless IPMSM drive systems,” IEEE Access, vol. 10, pp. 42727-42738, 2022.
[72] W. Xu, Y. Jiang, C. Mu, and F. Blaabjerg, "Improved nonlinear flux observer-based second-order SOIFO for PMSM sensorless control," IEEE Trans. Power Electron., vol. 34, no. 1, pp. 565-579, Jan. 2019.
[73] Q. Liu and K. Hameyer, "High-performance adaptive torque control for an IPMSM with real-time MTPA operation," IEEE Trans. Energy Convers., vol. 32, no. 2, pp. 571-581, June 2017.
[74] G. Wang, Z. Li, G. Zhang, Y. Yu, and D. Xu, "Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy," IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 214-224, March 2013.
[75] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, Wiley, 2012.
[76] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, 1st ed. London, U.K.: Springer-Verlag, 2009.
[77] TMS320F2808 Digital Signal Processor Data Manual, SPRS230F, Texas Instruments, October, 2003 - Revised September, 2005.
[78] AD7655 Datasheet, Analog Devices Inc., 2002-2016.

無法下載圖示 全文公開日期 2025/01/16 (校內網路)
全文公開日期 2025/01/16 (校外網路)
全文公開日期 2025/01/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE