簡易檢索 / 詳目顯示

研究生: 張家榮
Jia-Rong Zhang
論文名稱: 鉬鎢輕摻雜之二硫化鉬鎢晶體成長與特性研究
Crystal growth and characterization of Mo1-xWxS2 layered crystals with dilute Mo and W incorporations
指導教授: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-Yi Lee 
口試委員: 何清華
Ching-Hwa Ho
許宏彬
Hung-Pin Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 彎曲效應二硫化鉬鎢化學氣相傳導法過渡性金屬二維層狀半導體
外文關鍵詞: TMDs, CVT, Mo1-xWxS2, bowing effect
相關次數: 點閱:328下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究論文是以化學氣相傳導法利用碘 (I2) 為傳導劑成長鉬鎢輕摻雜之二硫化鉬鎢 (Mo1-xWxS2, 0 ≤ x ≤ 0.1; 0.9 ≤ x ≤ 1, Δx = 0.02) 系列層狀單晶半導體,並且對此系列晶體之光學特性進行量測與激子能量彎曲效應 (Bowing effect) 研究。藉由X-ray 繞射與Raman量測分析可確定此系列晶體之結構為2H (Two-layer Hexagonal) ,並且探討鉬 (Mo) 和鎢 (W) 之輕摻雜比例改變後其晶體結構及光學性質的變化,同時可定義晶體的成分比例變化。 在光學量測實驗,利用壓電調制反射光譜 (PzR) 可確定Mo1-xWxS2系列晶體之激子A1與B躍遷訊號,在室溫的情況下,其激子躍遷訊號隨成分變化之範圍分別在1.85~1.98 eV及2.05~2.41 eV之間。此外,Mo1-xWxS2藉由鉬與鎢之輕摻雜發現PzR的激子能量的隨成分變化而具有彎曲效應的現象。根據上述現象,藉此研究探討過渡性金屬元素對導帶底部會產生彎曲效應的影響,並且由激子躍遷訊號對成份變化的擬合結果可得知Mo1-xWxS2系列晶體中激子躍遷訊號最低的位置約在x=0.2,研究出彎曲效應對激子躍遷訊號變化的影響。


Layered crystals of Mo1-xWxS2 (0 ≤ x ≤ 0.1; 0.9 ≤ x ≤ 1, Δx = 0.02 ) have been grown by chemical vapor transport (CVT) method using iodine as a transport agent. Detailed characterization of the materials are carried out by using X-ray diffraction (XRD), Raman scattering and piezoreflectance (PzR) techniques. XRD analysis and Raman scattering measurement confirm that Mo1-xWxS2 crystals are crystallized in two-layer hexagonal structure. Optical properties of Mo1-xWxS2 were characterized using PzR measurement which showed that the excitonic transition energies A1 of Mo1-xWxS2 varied in the range of 1.85-1.98 eV and B is of 2.05-2.41 eV at room temperature. In addition, the PzR results reveal that the bowing effect existed in the composition-dependent excitonic transitions of Mo1−xWxS2 alloys with dilute Mo and W incorporations. The excitonic transitions of the excitons A1 and B show different value of bowing parameter. According to the experiment observations, this study have demonstrated excitons transitions A1 and B are different in bowing effect. The result showed the excitonic transitions energies are tunable by doping effect.

中文摘要 Abstract 目錄 圖索引 表索引 第一章 緒論 1.1 研究背景 1.2 研究主題與方法 第二章 晶體成長 2.1 晶體成長方法 2. 2 單晶成長設備介紹 2.2.1 真空系統 2.2.2 長晶反應系統 2.3 單晶成長 第三章 光學量測技術與特性研究 3.1 X光繞射儀 (XRD) 3.1.1 X光繞射原理 3.1.2 實驗方法 3.1.2 X光繞射實驗結果與討論 3.2 拉曼散射光譜 (Raman scattering) 3.2.1 拉曼散射原理 3.2.2 實驗方法 3.2.3 拉曼散射結果與討論 3.3 壓電調制反射光譜 (PzR) 3.3.1 調制光譜原理 3.3.2 實驗方法 3.3.3 調制光譜量測結果與討論 第四章 結論 參考文獻

[1] J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys., vol. 18, pp. 193-335, 1969.
[2] S. J. Li, J. C. Bernede, J. Pouzet, and M. Jamali, "WS2 thin films prepared by solid state reaction (induced by annealing) between the constituents in thin film form," Journal of Physics-Condensed Matter, vol. 8, pp. 2291-2304, 1996.
[3] P. Grange, "Catalytic hydrodesulfurization,"Cat. Rev. - Sci. Eng., vol. 21, pp. 135-181, 1980.
[4] P. G. Moses, B. Hinnemann, H. Topsoe, and J. K. Norskov, "The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study," Journal of Catalysis, vol. 248, pp. 188-203, 2007.
[5] W. Kautek, H. Gerischer, and H. Tributsch, "The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d-band Semiconductors," J. Electrochem. Soc., vol. 127, pp. 2471-2478, 1980.
[6] K. K. Kam and B. A. Parkinson, "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides," J. Phys. Chem., vol. 86, pp. 463-467, 1982.
[7] S. Cincotti and J. P. Rabe, "Self‐assembled alkane monolayers on MoSe2 and MoS2," Appl. Phys. Lett., vol. 62, pp. 3531-3533, 1993.
[8] J. K. Ellis, M. J. Lucero, and G. E. Scuseria, "The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory," Appl. Phys. Lett., vol. 99, 2011.
[9] J. B. Legma, G. Vacquier, H. Traore, and A. Casalot, "Improvement in photocurrent with n-type niobium- and rhenium-doped molybdenum and tungsten diselenide single crystals," Mater. Sci. Eng., B, vol. 8, pp. 167-174, 1991.
[10] P. Bhattacharya, "Semiconductor optoelectronic devices," Pearson Education Taiwan Limited, 2003.
[11] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, "High-mobility field-effect transistors based on transition metal dichalcogenides," Appl. Phys. Lett., vol. 84, pp. 3301-3303, 2004.
[12] D. O. Dumcenco, Y. C. Su, Y. P. Wang, K. Y. Chen, Y. S. Huang, C. H. Ho, and K. K. Tiong, "Piezoreflectance and Raman characterization of Mo1-xWxS2 layered mixed crystals," Solid State Phenomena, Vol. 170, pp. 55-59, 2011.
[13] Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, "Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys," Acs Nano, vol. 7, pp. 4610-4616, 2013.
[14] J. Kang, S. Tongay, J. B. Li, and J. Q. Wu, "Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing," J. Appl. Phys., vol. 113, 2013.
[15] H. Schäfer, "Chemical transport reactions," New York: Academicpress, 1964.
[16] M. C. Ball, “Chemical transport reactions," J. Chem. Educ., vol. 45, pp. 651, 1968.
[17] A. Beiser, "Concepts of modern physics," McGraw-Hill, 1987.
[18] D. Yang and R. F. Frindt, “Powder x‐ray diffraction of two‐dimensional materials," J. Appl. Phys., vol. 79, pp. 2376-2385, 1996.
[19] B. E. A. Saleh and M. C. Teich, "Fundamentals of photonics," New York: Wiley, 1991.
[20] C. Kittel, “Introduction to solid state physics," John Wiley and Sons, 1986.
[21] B. O. Seraphin, R. B. Hess, and N. Bottka, "Field effect of the reflectivity in germanium," J. Appl. Phys., vol. 36, pp. 2242-2250, 1965.
[22] F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng., R, vol. 10, pp. 275-374, 1993.
[23] H. Mathieu, J. Allègre, and B. Gil, "Piezomodulation spectroscopy: a powerful investigation tool of heterostructures," Phys. Rev. B, vol. 43, pp. 2218-2227, 1991.
[24] P. Y. Yu and M. Cardona, "Fundamentals of semiconductors: physics and materials properties," New York: Springer, 2010.
[25] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, 2012.
[26] J. L. Verble and T. J. Wieting, "Lattice mode degeneracy in MoS2 and other layer compounds," Phys. Rev. Lett., vol. 25, pp. 362-365, 1970.
[27] T. J. Wieting and J. L. Verble, "Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2," Phys. Rev. B, vol. 3, pp. 4286-4292, 1971.
[28] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, "Raman scattering and Infrared reflectance in 2H-MoSe2," J. Phys. Soc. Jpn., vol. 49, pp. 1069-1077, 1980.
[29] D. O. Dumcenco, Y. C. Su, Y. P. Wang, K. Y. Chen, Y. S. Huang, C. H. Ho, and K. K. Tiong, "Polarization dependent Raman active modes study of the Mo1-xWxS2 mixed layered crystals," Chin. J. Phys., Vol. 49, No. 1, pp. 270-277, 2011.
[30] D. O. Dumcenco, K. Y. Chen, Y. P. Wang, Y. S. Huang, and K. K. Tiong, "Raman study of 2H-Mo1-xWxS2 layered mixed crystals," J. Alloy, Compounds, vol. 506, pp. 940-943, 2010.
[31] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, pp. 149-154, 1967.
[32] P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, "Interband critical points of GaAs and their temperature dependence," Phys. Rev. B, vol. 35, pp. 9174-9189, 1987.

無法下載圖示 全文公開日期 2020/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE