簡易檢索 / 詳目顯示

研究生: 許家瑋
Chia-Wei Hsu
論文名稱: 含磷廢液合成高純度磷灰石
Recovery of Phosphate as Hydroxyapatite from Semiconductor Wastewater
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 李奇旺
Chi-Wang Lee
許詩韓
Shr-Han Shiu
村岡雅弘
Masahiro Muraoka
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 120
中文關鍵詞: 磷灰石磷酸沉澱模型反應器半導體廢水
外文關鍵詞: Hydroxyapatite (HAP),, pilot scale
相關次數: 點閱:312下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以批次式反應器處理電子業含磷廢水,在不同濃度的磷酸下(1,000~20,000 mg/L),以氯化鈣作為沉澱劑,產生高純度磷灰石(Ca5(PO4)3OH)。當鈣對磷酸的莫耳比為5:3,酸鹼值為8時,可移除94~99%的磷酸。實驗系統的平衡計算是由電腦軟體PHREEQC所模擬,且模擬與實驗結果作比較。我們證明在適當的莫耳比與酸鹼值可以生成磷灰石沉澱,利用X光繞射分析與濕式化學分析,證明固體沉澱物為磷灰石。我們也設計尺寸放大10公升的模型反應器,結果顯示,移除率與結晶性質與瓶杯實驗的結果相符,後續也針對沉澱時間、濁度與產率進行分析,在高濃度磷酸條件下,磷灰石因顆粒小導致不易沉澱,因此在實驗中也加入適量的聚電解質幫助減少沉澱時間。我們也討論兩階段串聯系統,第一階段為生成磷酸氨鎂;第二階段添加鈣鹽生成磷灰石,結果顯示可以順利形成磷灰石沉澱且磷酸達到放流水標準。由於電子業廢水成份單純、濃度高,因此磷酸加入鈣鹽回收成磷灰石,不只可以減少汙泥的排放,在成本亦具有相對優勢。


The current study aims to develop a treatment technology for phosphate-containing wastewater from electronics industries to produce high-purity hydroxyapatite (HAP). Calcium chloride (CaCl2) was used as precipitation reagent. When at molar ratio ([Ca]:[PO4]) of 5:3 and pH 8, total of 94~99 % of phosphate was removed at different initial phosphate concentration (1,000~20,000 mg/L). Theoretical equilibria were modeled with PHREEQC and compared with experimental results. Characterization of solid precipitates using X-ray diffraction (XRD) and wet chemical analysis confirmed the presence of HAP. A pilot scale system consisting of a 10-dm3 reactor was used as well. The results of phosphate removal efficiency and the property of solid were similar with those from bench scale reactor. Settling time, turbidity and yield of HAP were evaluated. It is difficult for HAP to settle via gravity when at high initial phosphate concentration since the particles were small. Therefore, flocculant was added to improve solid-liquid separation. Compared with conventional phosphate treatment in electronic industry, recovery as HAP could decrease the treatment cost of sludge and recycle and reuse phosphorus as resource. Considering that the composition of semiconductor wastewater is simple and with high concentration, the technology has a tremendous potential to become commercialized.

摘要 Abstract Acknowledgment Contents List of Figures List of Tables CHAPTER 1 1.1 Background 1.2 Objectives CHAPTER2 2.2 Removal and recovery of phosphate 2.2.1 Effect of excess phosphate on natural water 2.2.2 Semiconductor wastewater 2.2.3 Processes for removal of phosphate 2.2.4 Chemical precipitation for phosphorus removal 2.3 The characterization of calcium phosphate 2.4 Field trip to full-scale plant in Gifu, Japan 2.5 Full-scale plants in the world 2.5.1 Phosphorus recovery from wastewater in a fluidized bed reactor CHAPTER 3 3.1 Materials and reagents 3.2 Instruments 3.3 Methods 3.3.1 Characterization of raw wastewater 3.3.2 Experimental procedures of bench scale system 3.3.3 Experimental procedures of pilot scale system 3.3.4 Experimental procedures of two reactors in series system 3.4 Analysis procedures 3.4.1 pH meter 3.4.2 Turbidity 3.4.3 ICP-AES analysis 3.4.4 FESEM-EDS analysis 3.4.5 Image J 3.4.6 X-ray diffraction (XRD) 3.4.7 Zone settling velocity (ZSV) 3.5 Thermodynamic modeling software (PHREEQC) 3.6 Experimental flowcharts CHAPTER 4 4.1 Precipitation of HAP in bench-scale system 4.1.1 Effect of pH value 4.1.2 Solid characterization 4.2 Effect of initial phosphate concentration 4.2.1 Phosphate removal efficiency 4.1.4 Solid characterization 4.3 Pilot scale system 4.3.1 Effect of initial phosphate concentration 4.3.2 Solid characterization 4.3.3 Settling time 4.3.4 Total suspend solid and yield of HAP 4.4 Two reactors in series system 4.5 Perspectives of phosphate recovery 4.6 Cost analysis of phosphorous recovery CHAPTER 5 5.1 Conclusions 5.2 Recommendations REFERENCE

Berg, U., Donnert, D., Weidler, P. G., Kaschka, E., Knoll, G., & Nüesch, R. (2006). Phosphorus removal and recovery from wastewaterby tobermorite-seeded crystallisation of calcium phosphate. Water Science and Technology, 53(3), 131-138.
Da Silva, M. P., Lima, J. H. C., Soares, G. A., Elias, C. N., De Andrade, M. C., Best, S. M., & Gibson, I. R. (2001). Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surface and Coatings Technology, 137(2-3), 270-276.
Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220.
Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W.,& Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384.
Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164.
Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770s till 1950. Materials Science and Engineering: C, 33(6), 3085-3110.

Duan, J. M., Cao, Y. L., & He, B. Y. (2010, June). Phosphates recovery through hydroxyapatite crystallization from wastewater using converter slag as a seed crystal. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (pp. 1-4). IEEE.
Duncan, J., MacDonald, J. F., Hanna, J. V., Shirosaki, Y., Hayakawa, S., Osaka, A., & Gibson, I. R. (2014). The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate. Materials Science and Engineering: C, 34, 123-129.
Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522-542.
Gantner, O. (2015). Ressourcenstrategische Betrachtung der Kritikalität von Phosphor. PhD thesis, Universität Augsburg.
Gantner O, Schipper W, Weigand JJ (2014) Technological use of phosphorus: the non-fertilizer,non-feed and non-detergent domain. In: Scholz RW, Roy AH, Brand FS, Hellums DH, Ulrich AE (eds) Sustainable phosphorus management–a sustainable roadmap. Springer, Berlin.
Goto, A., & Yamasaki, K. (1999). A new wastewater treatment technology for mixed acid drainage containing fluorine. IEEE transactions on semiconductor manufacturing, 12(3), 295-301.
Gregory, T. M. (1974). Solubility of β-Ca3 (PO4)2 in the system Ca (OH)2-H3PO4-H2O at 5, 15, 25, and 37℃. J Res Natl Bur Std, 78, 667-674.

Gu, C., Zhang, C., Li, Y., & Zhou, Q. (2015). Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate. Chinese Journal of Environmental Engineering, 9(7), 3127-3133.
Hanhoun, M., Montastruc, L., Azzaro-Pantel, C., Biscans, B., Frèche, M., & Pibouleau, L. (2011). Temperature impact assessment on struvite solubility product: A thermodynamic modeling approach. Chemical engineering journal, 167(1), 50-58.
He, Z., Zhai, Q., Hu, M., Cao, C., Wang, J., Yang, H., & Li, B. (2015). Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. Journal of orthopaedic translation, 3(1), 1-11.
Hermassi, M., Valderrama, C., Dosta, J., Cortina, J. L., & Batis, N. H. (2015). Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride. Chemical engineering journal, 267, 142-152.
Heughebaert, J. C., & Nancollas, G. H. (1985). Solubility of octacalcium phosphate at 25 and 45. degree. C in the system calcium hydroxide-phosphoric acid-potassium nitrate-water. Journal of chemical and engineering data, 30(3), 279-281.
Hosni, K., Moussa, S. B., Chachi, A., & Amor, M. B. (2008). The removal of PO43− by calcium hydroxide from synthetic wastewater: optimisation of the operating conditions. Desalination, 223(1-3), 337-343.
Hutnik, N., Kozik, A., Mazienczuk, A., Piotrowski, K., Wierzbowska, B., & Matynia, A. (2013). Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water research, 47(11), 3635-3643.

Ichihashi, O., & Hirooka, K. (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource technology, 114, 303-307.
Islam, M., Mishra, S., Swain, S. K., Patel, R., Dey, R. K., & Naushad, M. (2014). Evaluation of phosphate removal efficiency from aqueous solution by polypyrrole/BOF slag nanocomposite. Separation Science and Technology, 49(17), 2668-2680.
Jones, H. (2015, August 4). Whitepaper: semiconductor industry from 2015 to 2025. Retrieved from https://www.semi.org/en/semiconductor-industry-2015-2025
Kabbe, C. (2013). Sustainable sewage sludge management fostering phosphorus recovery. Bluefacts, 4, 36-41.
Kabbe, C., Remy, C., & Kraus, F. (2015, June). Review of promising methods for phosphorus recovery and recycling from wastewater. International Fertiliser Society.
Kibalczyc, W. (1989). Study of calcium phosphate precipitation at 37 C. Crystal research and technology, 24(8), 773-778.
Kim, K. J. (2006). Purification of phosphoric acid from waste acid etchant using layer melt crystallization. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 29(2), 271-276.
Krüger, O., & Adam, C. (2017). Phosphorus in recycling fertilizers-analytical challenges. Environmental research, 155, 353-358.

Kuroda, K., Ichino, R., Okido, M., & Takai, O. (2002). Effects of ion concentration and pH on hydroxyapatite deposition from aqueous solution onto titanium by the thermal substrate method. Journal of Biomedical Materials Research, 61(3), 354-359.
Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., & Birnhack, L. (2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg (II) source. Separation and Purification Technology, 108, 103-110.
Liu, Y., Sheng, X., Dong, Y., & Ma, Y. (2012). Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination, 289, 66-71.
Liu, J., Cao, J., Hu, Y., Han, Y., & Zhou, J. (2017). Adsorption of phosphate ions from aqueous solutions by a CeO2 functionalized Fe3O4@ SiO2 core-shell magnetic nanomaterial. Water Science and Technology, 76(11), 2867-2875.
Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847-907.
Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor–reverse osmosis system. Bioresource technology, 200, 297-304.
McDowell, H., Gregory, T. M., & Brown, W. E. (1977). Solubility of Ca5 (P04) 3OH in the System Ca (OH) 2-H3P04-H20 at 5, 15, 25, and 37 C. Jonual of Research of the National Bureau of Standards-A. Physics and Chemistry, 81(2–3), 273-281.

Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41-50.
Moreno, E. C., Brown, W. E., & Osborn, G. (1960). Stability of Dicalcium Phosphate Dihydrate in Aqueous Solutions and Solubility of Octocalcium Phosphate 1. Soil Science Society of America Journal, 24(2), 99-102.
Nakagawa, H., & Ohta, J. (2019). Phosphorus Recovery from Sewage Sludge Ash: A Case Study in Gifu, Japan. In Phosphorus Recovery and Recycling (pp. 149-155). Springer, Singapore.
Naushad, M., Sharma, G., Kumar, A., Sharma, S., Ghfar, A. A., Bhatnagar, A., & Khan, M. R. (2018). Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. International journal of biological macromolecules, 106, 1-10.
Nawa, Y., & Matsushita, T. (2009). P-recovery in Japan–the PHOSNIX process. In Conference Baltic (Vol. 21).
Neira, I. S., Kolen’ko, Y. V., Lebedev, O. I., Van Tendeloo, G., Gupta, H. S., Guitián, F., & Yoshimura, M. (2008). An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. crystal growth and design, 9(1), 466-474.
Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource Technology, 169, 750-762.

Ohtake, H., & Okano, K. (2015). Development and implementation of technologies for recycling phosphorus in secondary resources in Japan. Global Environmental Research, 19(1), 49-65.
Okano, K., Uemoto, M., Kagami, J., Miura, K., Aketo, T., Toda, M., & Ohtake, H. (2013). Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs). Water research, 47(7), 2251-2259.
Oladoja, N. A., Ahmad, A. L., Adesina, O. A., & Adelagun, R. O. A. (2012). Low-cost biogenic waste for phosphate capture from aqueous system. Chemical engineering journal, 209, 170-179.
Owens, C. L., Nash, G. R., Hadler, K., Fitzpatrick, R. S., Anderson, C. G., & Wall, F. (2019). Apatite enrichment by rare earth elements: A review of the effects of surface properties. Advances in colloid and interface science.
Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresource Technology, 99(14), 6285-6291.
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Qiu, G., Law, Y. M., Das, S., & Ting, Y. P. (2015). Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental science & technology, 49(10), 6156-6163.

Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O., & van Dijk, K. C. (2015). Phosphorus management in Europe in a changing world. Ambio, 44(2), 180-192.
Shanshool, H. A., & Mohammed, S. A. (2009). Phosphorus removal from water and waste water by chemical precipitation using alum and calcium chloride. Iraqi Journal of Chemical and Petroleum Engineering, 10(2), 47-52.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587.
Shih, Y. J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473.
Song, Y., Hahn, H. H., & Hoffmann, E. (2002). The effect of carbonate on the precipitation of calcium phosphate. Environmental technology, 23(2), 207-215.
Sutter, J. R., McDowell, H., & Brown, W. E. (1971). Solubility study of calcium hydrogen phosphate. Ion-pair formation. Inorganic Chemistry, 10(8), 1638-1643.
Suzuki, O. (2013). Octacalcium phosphate (OCP)-based bone substitute materials. Japanese dental science review, 49(2), 58-71.
Tarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource technology, 206, 264-274.

Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Metcalf & Eddy wastewater engineering: treatment and reuse. International Edition. McGrawHill, 4, 361-411.
Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., Burton, F., Abu-Orf, M., Bowden, G., & Pfrang, W. (2014). Wastewater Engineering: Treatment and Resources Recovery. In: McGraw-Hill Education: New York, NY, USA.
Ueno, Y. (2004). Full scale struvite recovery in Japan. Phosphorus in Environmental Technology: Principles and Applications. Valsami-Jones, E.(ed) IWA Publishing, London.
Ueno, Y., & Fujii, M. (2001). Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, 22(11), 1373-1381.
Urdalen, I. (2013). Phosphorus recovery from municipal wastewater. Norwegian University of Science and Technology: Trondheim, Norway.
Wang, L., & Nancollas, G. H. (2008). Calcium orthophosphates: crystallization and dissolution. Chemical reviews, 108(11), 4628-4669.
Warmadewanthi, & Liu, J. C. (2009). Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64(3), 368-373.
Wilsenach, J. A., Schuurbiers, C. A. H., & Van Loosdrecht, M. C. M. (2007). Phosphate and potassium recovery from source separated urine through struvite precipitation. Water research, 41(2), 458-466.
Ye, X., Ye, Z. L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder technology, 295, 16-26.

QR CODE