簡易檢索 / 詳目顯示

研究生: 鍾仁豪
Jen-hao Chung
論文名稱: 基於常模演算法之5 Gb/s盲目前饋式等化器
A 5 Gb/s Blind Feed-Forward Equalizer Based on the Constant Modulus Algorithm
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 盲目等化器常模演算法前饋式等化器
外文關鍵詞: Blind equalizer, Constant modulus algorithm, Feed-Forward equalizer
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著高速有線傳輸的發展,通道損耗的議題也逐漸受到重視,而等化器(Equalizer)正是解決訊號失真的可行方案。本論文使用前饋式等化器(Feed-Forward Equalizer, FFE)做為主要架構,並以常模演算法(Constant Modulus Algorithm, CMA)完成權重的收斂,然而過去文獻大多以PC或FPGA等方式實現權重收斂演算法的設計,此舉降低了電路運作的方便性,有鑑於此,本論文以全類比電路的方式將CMA實現於晶片內,由於其盲目等化器的架構,故本設計具有不需傳遞訓練序列,即可套用於接收端的良好適應性。

本論文提出一應用於5 Gb/s USB 3.0 傳輸線之基於常模演算法之前饋式等化器架構(CMA_FFE),並以 TSMC 90 nm CMOS 製程實現,於1.2 V的工作電壓下,等化器電路的功率消耗為13.2 mW,晶片總面積為0.59 mm2,而核心部分面積為 0.058 mm2。在後模擬中,此等化器可補償USB 3.0 3 m 傳輸線在 Nyquist frequency 的16 dB損耗,模擬在30萬筆資料中,本論文之等化器可將 3 m 傳輸線之誤碼率從0.5降低為0,而實際電路量測上並無法將誤碼率改善,在本論文的最後會進行原因的分析。


In high-speed wireline communications, to reduce frequency-dependent channel loss is an important issue. The equalizer is an effective solution to resolve the frequency- dependent signal attenuation. This thesis proposed an on-chip constant-modulus-algorithm (CMA) -based Feed-Forward equalizer (FFE) to overcome this problem. Since CMA is a blind equalization method that does not need training sequence, the adaptive mechanism can be completely implemented on chip.
This thesis proposed the constant-modulus-algorithm-based Feed-Forward equalizer that compensates the cable loss for 5 Gb/s USB 3.0 application. The CMA-based FFE chip was realized in TSMC 90 nm CMOS process. The power consumption of equalizer is 14.4 mW under 1.2 V supply voltage. The total chip area is 0.59 mm2 with pads, and the core area is 0.058 mm2. In post layout simulations, the proposed equalizer has the ability to compensate the cable loss for USB 3.0. In this thesis, we assumed a 3-meter lines in simulations. The compensated cable loss are 16 dB for the 3 m cable at Nyquist frequency, respectively. After simulating a transmission of three hundred thousand bits, we show that the equalizer can improve BER from 0.5 to 0 for the 3-meter USB 3.0 cable. In fact, the equalizer can not improve the BER from 0.5 down to 0.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 簡介 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 使用工具與模擬軟體 5 1.4 論文架構 5 第二章 等化器架構介紹 7 2.1 通道環境 7 2.2 等化器發展 9 2.3 等化器架構 10 2.3.1 Traditional Analog Equalizer(傳統式類比等化器) 10 2.3.2 Feed-Forward Equalizer (FFE) 11 2.3.3 Decision Feedback Equalizer (DFE) 11 2.4 係數收斂演算法 13 2.4.1 Least Mean Square (LMS) 13 2.4.2 Constant Modulus Algorithm (CMA) 13 2.5 系統應用 16 第三章 使用常模演算法的5 GB/S盲目前饋式等化器 18 3.1 CMA_FFE電路架構 18 3.2 Input buffer電路 20 3.3 Delay element電路 22 3.4 Combiner電路 26 3.5 Gain stage電路 29 3.6 Error estimator電路 31 3.7 Multiplier電路 34 3.8 Integrator電路 37 3.9 Bias電路 40 第四章 靜電放電保護電路 42 4.1 靜電放電模型 42 4.2 二極體 43 4.3 模擬結果 44 4.3.1 偏壓電路之ESD保護電路後模擬結果 44 4.3.2 輸入訊號之ESD保護電路後模擬結果 47 第五章 系統模擬及晶片量測結果 49 5.1 設計流程及晶片模擬結果 49 5.2 晶片佈局 52 5.3 晶片量測結果 54 5.3.1 量測環境 54 5.3.2 PCB電路板設計 55 5.3.3 量測結果 57 5.4 文獻與規格比較 62 第六章 結論與未來展望 66 6.1 結論 66 6.2 未來展望 66 參考文獻 67

[1] Behzad Razavi, RF MICROELECTRONICS, 1998.
[2] S. Gondi, J. Lee, D. Takeuchi, and B. Razavi, “10 Gb/s CMOS adaptive
equalizer for backplane applications,” in IEEE Solid-State Circuits Conf. Dig. Tech. Papers, 2005, pp. 328–330.
[3] K.-H. Cheng, Y.-C. Tsai, Y.-H. Wu, and Y.-F. Lin, “A 5-Gb/s Inductorless CMOS Adaptive Equalizer for PCI Express Generation II Applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 324-328,May. 2010.

[4] 蔡明雄,適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計,碩士論文,中央大學,2006.
[5] D. Hernandez-Garduno, and Jose Silva-Martinez, “A CMOS 1 Gb/s 5-Tap Fractionally-Spaced Equalizer,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2482-2491, Nov. 2008.
[6] MARCOS LUIS LOPEZ-RIVERA, A 3.125 GB/S 5-TAP CMOS TRANSVERSAL EQUALIZER, Thesis, Texas A&M University, Dec. 2009.
[7] X. Lin, S. Saw, and J. Liu, “A 2.5- to 3.5-Gb/s adaptive FIR equalizer with continuous-time wide-bandwidth delay line in 0.25 μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1908–1918, Aug. 2006.
[8]
D. N. Godard, “ Self-Recovering Equalization and Carrier Tracking in Two-
Dimensional Data Communication Systems,” IEEE Trans. Commun, vol. COM-28, pp. 1867-1875, Nov. 1980.
[9] Jonh-Sang Choi, Moon-Sang Hwang, and Deog-Kyoon Jeong, “A 0.18-μm CMOS 3.5-Gb/s Continuous-Time Adaptive Cable Equalizer Using Enhanced Low-Frequency Gain Control Method,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 419–425, Mar. 2004.
[10] J.-S. Choi, M.-S Hwang, and D. –K. Jeong, “A 0.18-μm CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425,Mar. 2004.
[11] J. Lee, “A 20-Gb/s adaptive equalizer in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sep. 2006.
[12] C.-F. Liao and S.-I. Liu, “A 40-Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492-2502, Nov. 2008.
[13] H.Wang, and J. Lee, “A 21-Gb/s 87-mW Transceiver With FFE/DFE/Analog Equalizer in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45 , pp. 909-920, April 2010.
[14] A. Emami-Neyestanak, A. Vazaghani, J. F. Bulzacchelli, A. Rylyakov, C.-.
K. K. Yang, and D. J. Friedman, “A 6.0-mW 10.0-Gb/s Reveiver With Switched-Capacitor Summation DFE,” IEEE Journal of Solid-State Circiut,
vol. 42, pp. 889–896, Apr. 2007.
[15] USB 3.0 SuperSpeed Equalizer Design Guidelines
[16] C.-H. Wu, C.-S. Liu, and S.-I. Liu, “ A 2 GHz CMOS variable-gain amplifier
with 50 dB linear-in-magnitude controlled gain range for 10GBase-LX4 Ethernet,” IEEE Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004, pp. 484-541.
[17] Azita Emami-Neyestanak, Aida Varzaghani, John F. Bulzacchelli, Alexander Rylyakov, Chih-Kong Ken Yang, and Daniel J. Friedman , “A 6.0-mW 10.0-Gb/s Receiver With Switched-Capacitor Summation DFE,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 889 - 896, Apr. 2007
[18] C.-F. Liao and S.-I. Liu, “A 40-Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492–2502, Nov. 2008.
[19] D. Z. Turker, A. Rylyakov, D. Friedman, S. Gowda, and E. Sanchez- Sinencio, “A 19 Gb/s 38mW1-Tap speculative DFE in 90 nm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2009.
[20] Sanquan Song, and Vladimir Stojanovic “A 6.25 Gb/s Voltage-Time Conversion Based Fractionally Spaced Linear Receive Equalizer for Mesochronous High-Speed Links,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1183–1197, May 2011.
[21] Sameh Ibrahim, and B. Razavi, “Low-Power CMOS Equalizer Design for 20-Gb/s Systems,” IEEE J. Solid-State Circuits, vol. 46, no. 6, June 2011.

無法下載圖示 全文公開日期 2019/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE