Basic Search / Detailed Display

Author: 許竣愷
Jun-Kai Xu
Thesis Title: 新型鋰離子電池安全性添加劑應用於三元正極材料 Li[Ni0.6Co0.2Mn0.2]O2
The Application of Novel Lithium Ion Batteries Safety Additives in Cathode Material Li[Ni0.6Co0.2Mn0.2]O2
Advisor: 陳崇賢
Chorng-Shyan Chern
Committee: 范國泰
許榮木
Degree: 碩士
Master
Department: 工程學院 - 化學工程系
Department of Chemical Engineering
Thesis Publication Year: 2021
Graduation Academic Year: 109
Language: 中文
Pages: 78
Keywords (in Chinese): 鋰離子電池正極材料安全性添加劑寡聚物
Keywords (in other languages): Lithium-ion batteries, Cathode materials, Safety, Additives, Oligomers
Reference times: Clicks: 1072Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report


摘要 I Abstract II 第一章 緒論 1 1-1 前言 1 1-2 研究背景 3 1-2-1 鋰離子電池工作原理 3 1-2-2 正極材料 4 1-2-3 負極材料 6 1-2-4 電解質 9 1-3 研究動機 11 第二章 文獻回顧 12 2-1 三元正極材料發展與介紹 12 2-2 鋰電池安全性改善方法 14 2-2-1 正增溫係數層 14 2-2-2 電解液陰極保護添加劑 16 2-2-3 電解液阻燃添加劑 17 2-2-4 正極材料添加劑 17 第三章 實驗藥品、儀器與方法 19 3-1 實驗藥品 19 3-2 實驗儀器 19 3-3 實驗方法 21 3-3-1 Benchmark 樣品製備 21 3-3-2 正極漿料製備 (Blank) 21 3-3-3 正極漿料製備 (Additives) 22 3-3-4 極片製備 22 3-3-5 鈕扣型半電池組裝 23 3-3-6 DSC樣品製備 (A12, Benchmark存放穩定度測試) 23 3-3-7 DSC樣品製備 (正極極片熱穩定性測試) 24 3-3-8 TGA樣品製備 (純材料) 24 3-3-9 TGA樣品製備 (極片) 24 第四章 結果與討論 25 4-1 添加劑存放熱穩定性分析 25 4-2 添加劑熱穩定性分析 28 4-3 循環伏安法 (CV) 29 4-3-1 Blank NCM622 循環伏安法 29 4-3-2 A12 循環伏安法 30 4-3-3 Benchmark 循環伏安法 32 4-4 常溫初始充放電及循環壽命測試 34 4-4-1 常溫初始充放電測試 34 4-4-2 常溫循環壽命測試 36 4-5 常溫電化學交流阻抗分析 39 4-5-1 Blank NCM622 常溫電化學交流阻抗分析 40 4-5-2 A12 常溫交流阻抗分析 41 4-5-3 Benchmark 常溫交流阻抗分析 43 4-6 常溫倍率性能測試 45 4-7 高溫循環壽命測試 47 4-8 高溫電化學交流阻抗分析 49 4-9 高溫倍率性能測試 51 4-10 快速充放電循環壽命測試 53 4-11 正極極片熱穩定性測試 55 4-12 正極極片SEM分析 57 4-12-1 Blank NCM622極片 SEM 57 4-12-2 含添加劑極片SEM 57 第五章 結論 60 參考文獻 61

1. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
2. Nagaura, T., Lithium ion rechargeable battery. Progress in Batteries & Solar Cells, 1990. 9: p. 209.
3. 陳金銘, 啟動綠能電動車之鑰-高能量電池. 工業材料雜誌, 2021. 411: p. 52-53.
4. Tarascon, J.-M., et al., Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011: p. 171-179.
5. Abraham, K., Prospects and limits of energy storage in batteries. The journal of physical chemistry letters, 2015. 6(5): p. 830-844.
6. Whittingham, M.S., et al., The lithium intercalates of the transition metal dichalcogenides. Materials research bulletin, 1975. 10(5): p. 363-371.
7. Thackeray, M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
8. Padhi, A.K., et al., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997. 144(4): p. 1188.
9. Sobkowiak, A., et al., Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chemistry of Materials, 2013. 25(15): p. 3020-3029.
10. Meng, Y.S., et al., Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries. Accounts of Chemical Research, 2013. 46(5): p. 1171-1180.
11. Rozier, P., et al., Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. Journal of The Electrochemical Society, 2015. 162(14): p. A2490.
12. Manthiram, A., et al., Nickel‐rich and lithium‐rich layered oxide cathodes: progress and perspectives. Advanced Energy Materials, 2016. 6(1): p. 1501010.
13. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
14. Fouchard, D., et al., The molicel® rechargeable lithium system: Multicell aspects. 1987. 21(3-4): p. 195-205.
15. Laman, F., et al., Effect of discharge current on cycle life of a rechargeable lithium battery. 1988. 24(3): p. 195-206.
16. Fong, R., et al., Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 1990. 137(7): p. 2009.
17. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
18. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
19. Mahmood, N., et al., Nickel Sulfide/Nitrogen‐Doped Graphene Composites: Phase‐Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small, 2013. 9(8): p. 1321-1328.
20. Zhang, C., et al., Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced materials, 2013. 25(35): p. 4932-4937.
21. Boukamp, B., et al., All‐solid lithium electrodes with mixed‐conductor matrix. Journal of the Electrochemical Society, 1981. 128(4): p. 725.
22. Idota, Y., et al., Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397.
23. Dey, A., Electrochemical alloying of lithium in organic electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547.
24. Kumar, R., et al., In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Letters, 2016. 1(4): p. 689-697.
25. Kennedy, T., et al., Advances in the application of silicon and germanium nanowires for high‐performance lithium‐ion batteries. Advanced Materials, 2016. 28(27): p. 5696-5704.
26. Dahn, J.R., et al., Mechanisms for lithium insertion in carbonaceous materials. Science, 1995. 270(5236): p. 590-593.
27. Zhang, Z., et al., LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells. Journal of Power Sources, 2010. 195(21): p. 7397-7402.
28. Wang, H., et al., From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. Journal of power sources, 2007. 169(2): p. 375-380.
29. Aurbach, D., et al., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta, 2004. 50(2-3): p. 247-254.
30. Marom, R., et al., Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. Journal of the Electrochemical Society, 2010. 157(8): p. A972.
31. Jung, C., Electrochemical absorption effect of BF4 anion salt on SEI layer formation. Solid State Ionics, 2008. 179(27-32): p. 1717-1720.
32. Doucey, L., et al., A study of the Li/Li+ couple in DMC and PC solvents: part 1: characterization of LiAsF6/DMC and LiAsF6/PC solutions. Electrochimica acta, 1999. 44(14): p. 2371-2377.
33. Han, H.-B., et al., Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011. 196(7): p. 3623-3632.
34. Garcia, B., et al., Aluminium corrosion in room temperature molten salt. Journal of power sources, 2004. 132(1-2): p. 206-208.
35. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
36. Garche, J., et al., Encyclopedia of electrochemical power sources. 2013: Newnes.
37. Ohzuku, T., et al., Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry letters, 2001. 30(8): p. 744-745.
38. Ohzuku, T., et al., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 2001. 30(7): p. 642-643.
39. Noh, H.-J., et al., Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013. 233: p. 121-130.
40. Woo, S.-U., et al., Significant improvement of electrochemical performance of AlF3-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode materials. Journal of the Electrochemical Society, 2007. 154(11): p. A1005.
41. Abraham, D., et al., Surface changes on LiNi0. 8Co0. 2O2 particles during testing of high-power lithium-ion cells. Electrochemistry communications, 2002. 4(8): p. 620-625.
42. Feng, X., et al., A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochemistry communications, 2004. 6(10): p. 1021-1024.
43. Wang, E., et al., Stability of lithium ion spinel cells. III. Improved life of charged cells. Journal of the Electrochemical Society, 2000. 147(11): p. 4023.
44. K. Takechi, T. Shiga, U.S. Patent 6,235,431 (2001).
45. Jiang, J., et al., Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt. Journal of The Electrochemical Society, 2004. 151(4): p. A609.
46. Wang, X., et al., Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. Journal of The Electrochemical Society, 2001. 148(10): p. A1058.
47. Xu, K., et al., An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. Journal of The Electrochemical Society, 2002. 149(5): p. A622.
48. Hyung, Y.E., et al., Flame-retardant additives for lithium-ion batteries. Journal of power sources, 2003. 119: p. 383-387.
49. Yao, X., et al., Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. Journal of power sources, 2005. 144(1): p. 170-175.
50. Xu, K., et al., Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties. Journal of the Electrochemical Society, 2003. 150(2): p. A161.
51. Ding, M.S., et al., Effects of tris (2, 2, 2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3: 3: 4 weight ratios. Journal of The Electrochemical Society, 2002. 149(11): p. A1489.
52. Xu, K., et al., Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. Journal of the Electrochemical Society, 2002. 149(8): p. A1079.
53. Granzow, A., Flame retardation by phosphorus compounds. Accounts of Chemical Research, 1978. 11(5): p. 177-183.
54. K. Yokoyama, T. Sasano, A. Hiwara, U.S. Patent 6,010,806 (2000).
55. Wang, Z., et al., Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 as cathode material for Li-ion batteries. Journal of Power Sources, 2013. 236: p. 25-32.
56. Yang, K., et al., Significant improvement of electrochemical properties of AlF3-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode materials. Electrochimica Acta, 2012. 63: p. 363-368.
57. Liu, H.-M., et al., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. RSC Advances, 2014. 4(99): p. 56147-56155.
58. Wang, F.-M., et al., Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery. Journal of Membrane Science, 2011. 368(1-2): p. 165-170.
59. Tao, T., et al., Enhanced electrochemical performance of ZrO2 modified LiNi0. 6Co0. 2Mn0. 2O2 cathode material for lithium ion batteries. Ceramics International, 2017. 43(17): p. 15173-15178.
60. Hu, Z., et al., Vanadium-doped LiNi1/3Co1/3Mn1/3O2 with decreased lithium/nickel disorder as high-rate and long-life lithium ion battery cathode. Sci. Adv. Today, 2015. 1: p. 25218.
61. Schipper, F., et al., Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2. Journal of Materials Chemistry A, 2016. 4(41): p. 16073-16084.
62. Sim, S.-J., et al., Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Scientific reports, 2019. 9(1): p. 1-8.
63. Barai, A., et al., A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. Journal of Power Sources, 2015. 280: p. 74-80.
64. Dees, D., et al., Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. Journal of the Electrochemical Society, 2005. 152(7): p. A1409.
65. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
66. Thomas, M., et al., AC impedance analysis of polycrystalline insertion electrodes: application to Li1− x CoO2. Journal of the Electrochemical Society, 1985. 132(7): p. 1521.
67. Nobili, F., et al., An AC Impedance Spectroscopic Study of Li x CoO2 at Different Temperatures. The Journal of Physical Chemistry B, 2002. 106(15): p. 3909-3915.
68. Wang, C., et al., Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance. Electrochemical and Solid State Letters, 2007. 10(3): p. A65.
69. Doyle, M., et al., Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry, 1997. 27(7): p. 846-856.
70. Logan, E., et al., A study of the physical properties of Li-ion battery electrolytes containing esters. Journal of The Electrochemical Society, 2018. 165(2): p. A21.
71. Zhuang, Q.-C., et al., An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. The Journal of Physical Chemistry C, 2010. 114(18): p. 8614-8621.

無法下載圖示 Full text public date 2031/08/04 (Intranet public)
Full text public date This full text is not authorized to be published. (Internet public)
Full text public date This full text is not authorized to be published. (National library)
QR CODE