簡易檢索 / 詳目顯示

研究生: 盧誼璇
Yi-Hsuan Lu
論文名稱: 微帶線至基板合成波導轉接之阻抗匹配設計
Impedance Matching Design for Microstrip to Substrate Integrated Waveguide Transition
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
楊成發
Chang-Fa Yang
曾昭雄
Chao-Hsiung Tseng
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 178
中文關鍵詞: 微帶線基板合成波導阻抗匹配
外文關鍵詞: microstrip
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究如何使用阻抗匹配的方式,來達成小型化且寬頻的微帶線至基板合成波導轉接,分別討論四種高阻抗微帶線至基板合成波導的轉接結構以及五種低阻抗微帶線至基板合成波導的轉接結構。
關於四種微帶線至低阻抗基板合成波導的轉接結構,直接轉接的長度為0 mm,但是在X-band (8.2-12.4 GHz)中,其-20 dB反射係數頻寬只有17.98%。使用漸變式微帶線作為轉接結構,其-20 dB反射係數頻寬為38.69%,相當寬頻,幾乎涵蓋整個X-band (8.2-12.4 GHz),但是轉接電路長度卻增加為4.22 mm。使用漸變式基板合成波導的結構做轉接,雖然轉接的電路長度可以縮短為3.3 mm,但是其-20 dB反射係數頻寬只有4.12%。在訊號線上使用開路殘段的轉接,其-20 dB反射係數頻寬為38.00%,相當寬頻,幾乎涵蓋整個X-band (8.2-12.4 GHz),並且其轉接電路長度只有1.25 mm,相當小型化;在接地面上使用開路殘段的轉接,其-20 dB反射係數頻寬為31.99%,與使用漸變式微帶線與在訊號線上使用開路殘段的轉接相比,頻寬稍窄,另外,雖然其轉接電路長度稍微增加為1.6 mm,但是不會損耗訊號線上的電路面積。
關於五種微帶線至高阻抗基板合成波導轉接結構,直接轉接的長度為0 mm,但是在Ku-band (12.4-18 GHz)中,其-20 dB反射係數頻寬只有12.64%。使用漸變式微帶線作為轉接結構,其-20 dB反射係數頻寬只有13.97%,與直接轉接差異不大,並且轉接電路長度增加為2.855 mm。使用漸變式基板合成波導的轉接,雖然轉接的電路長度增加為3.3 mm,但是其-20 dB反射係數頻寬為35.22%,相當寬頻,幾乎涵蓋整個Ku-band (12.4-18 GHz)。在訊號線上使用開路殘段的轉接,其-20 dB反射係數頻寬為0%,無轉接效果,並且轉接電路長度增加為3.7 mm;在地面上使用開路殘段的轉接,其-20 dB反射係數頻寬為26.63%,與使用漸變式基板合成波導相比,雖然頻寬較窄,但是其轉接電路長度只有2.7 mm,並且不會損耗訊號線上的電路面積。移除基板合成波導之第一組貫孔的轉接,雖然其轉接電路長度進一步縮小為2 mm,但是其-20 dB反射係數頻寬也跟著縮小為23.45%。在訊號線上加上短路殘段的轉接,雖然轉接電路長度可以進一步縮小為1.8 mm,但是其-20 dB反射係數頻寬也進一步縮小為18.22%。
為了降低板材的損耗,高階的板材是必須的,而板材成本也會跟著提高,小型化的設計能夠直接降低板材的成本,因此,本論文探討了許多種減少電路面積之設計,以提升實務上的價值。


In this thesis, the concept of impedance matching is utilized to accomplish the compact and broadband microstrip line to substrate integrated waveguide transitions. Four high-impedance microstrip line to substrate integrated waveguide transitions and five low-impedance microstrip line to substrate integrated waveguide transitions are investigated.
Concerning the four microstrip line to low-impedance substrate integrated waveguide transitions, although the direct microstrip line to substrate integrated waveguide transition has a transition length of 0 mm, the -20 dB fractional bandwidth of the reflection coefficient in the X-band (8.2-12.4 GHz) is only 17.98%. The transition using the tapered microstrip line can has a -20 dB fractional bandwidth of 38.69%, almost covering the whole X-band (8.2-12.4 GHz), but the transition length is as large as 4.22 mm. Although the transition using the tapered substrate integrated waveguide can reduce the transition length to a value of 3.3 mm, its -20 dB fractional bandwidth is only 4.12%. The transition using the open-circuited stub on the signal line can both achieve a -20 dB fractional bandwidth of 38.00%, almost covering the whole X-band (8.2-12.4 GHz), and reduce the transition length to a value of 1.25 mm, which is very small. The transition using the open-circuited stub on the ground plane can achieve a -20 dB fractional bandwidth of 31.99%, which is somewhat smaller than the -20 dB fractional bandwidths of the transition using the tapered microstrip line and the transition using the open circuited stub on the signal line, but the transition would not occupy any area on the signal line even though the transition length is somewhat increased to a value of 1.6 mm.
Concerning the five microstrip line to high-impedance substrate integrated waveguide transitions, although the direct microstrip line to substrate integrated waveguide transition has a transition length of 0 mm, the -20 dB fractional bandwidth of the reflection coefficient in the Ku-band (12.4-18 GHz) is only 12.64%. The transition using the tapered microstrip line has a -20 dB fractional bandwidth of 13.97%, which is almost the same as that of the direct transition, and the transition length is increased to a value of 2.855 mm. Although the transition using the tapered substrate integrated waveguide would increase the transition length to a value of 3.3 mm, it has a large -20 dB fractional bandwidth of 35.22%, almost covering the whole Ku-band (12.4-18 GHz). The failed transition using the open-circuited stub on the signal line has a -20 dB fractional bandwidth of 0% and the transition length is increased to a value of 3.7 mm. The transition using the open circuited stub on the ground plane can achieve a -20 dB fractional bandwidth of 26.63%, which is somewhat smaller than the -20 dB fractional bandwidth of the transition using the tapered substrate integrated waveguide, but the transition length can be reduced to a value of 2.7 mm and the transition would not occupy any area on the signal line. Although the transition with the removal of first via of the substrate integrated waveguide can further reduce the transition length to a value of 2 mm, its -20 dB fractional bandwidth is also reduced to 23.45%. Although the transition using the short-circuited stub on the signal line can furthermore reduce the transition length to a value of 1.8 mm, its -20 dB fractional bandwidth is also reduced to 18.22%.
In order to eliminate the substrate loss, high-order substrate is required. However, the cost will increase alongside. Compact transition can directly reduce the area of the transition, which in turn reduce the cost. This thesis proposes various compact and broadband transitions, which may find applications in the industrial.

目錄 摘要 I Abstract III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 簡介 1 1.1 研究動機 1 1.2 文獻探討 2 1.3 貢獻 9 1.4 論文架構 10 第二章 微帶線至低阻抗基板合成波導轉接 11 2.1 直接微帶線至基板合成波導轉接 12 2.1.1 轉接結構 12 2.1.2 轉接設計之分析與驗證 14 2.1.2.1 單一轉接 14 2.1.2.2 背對背結構驗證 18 2.2 漸變式微帶線至基板合成波導轉接 20 2.2.1 轉接結構 20 2.2.2 轉接設計之分析與驗證 21 2.2.2.1 單一轉接 22 2.2.2.2 背對背結構驗證 27 2.3 微帶線至漸變式基板合成波導轉接 29 2.3.1 轉接結構 29 2.3.2 轉接設計之分析與驗證 30 2.3.2.1 單一轉接 31 2.3.2.2 背對背結構驗證 37 2.4 使用開路殘段之微帶線至基板合成波導轉接 39 2.4.1 開路殘段於訊號線上之轉接結構 39 2.4.2 開路殘段於訊號線上之轉接設計分析與驗證 40 2.4.2.1 單一轉接 41 2.4.2.2 背對背結構驗證 46 2.4.3 開路殘段於接地面上之轉接結構 48 2.4.4 開路殘段於接地面上之轉接設計分析與驗證 49 2.4.4.1 單一轉接 50 2.4.4.2 背對背結構驗證 55 2.5 小結 57 第三章 微帶線至高阻抗基板合成波導轉接 63 3.1 直接微帶線至基板合成波導轉接 64 3.1.1 轉接結構 64 3.1.2 轉接設計之分析與驗證 66 3.1.2.1 單一轉接 66 3.1.2.2 背對背結構驗證 70 3.2 漸變式微帶線至基板合成波導轉接 72 3.2.1 轉接結構 72 3.2.2 轉接設計之分析與驗證 73 3.2.2.1 單一轉接 74 3.2.2.2 背對背結構驗證 79 3.3 微帶線至漸變式基板合成波導轉接 81 3.3.1 轉接結構 81 3.3.2 轉接設計之分析與驗證 82 3.3.2.1 單一轉接 83 3.3.2.2 背對背結構驗證 89 3.4 使用開路殘段之微帶線至基板合成波導轉接 91 3.4.1 開路殘段於訊號線上之轉接結構 91 3.4.2 開路殘段於訊號線上之轉接設計分析與驗證 92 3.4.2.1 單一轉接 93 3.4.2.2 背對背結構驗證 98 3.4.3 開路殘段於接地面上之轉接結構 100 3.4.4 開路殘段於訊號線上之轉接設計分析與驗證 101 3.4.4.1 單一轉接 102 3.4.4.2 背對背結構驗證 107 3.5 使用短路殘段之微帶線至基板合成波導轉接 109 3.5.1 移除基板合成波導第一組貫孔之轉接結構 109 3.5.2 移除基板合成波導第一組貫孔之轉接設計分析與驗證 110 3.5.2.1 單一轉接 111 3.5.2.2 背對背結構驗證 116 3.5.3 移除基板合成波導第一組貫孔結合短路殘段之轉接結構 118 3.5.4 移除基板合成波導第一組貫孔結合短路殘段之轉接設計分析與驗證 119 3.5.4.1 單一轉接 120 3.5.4.2 背對背結構驗證 125 3.6 小結 127 第四章 結論 134 參考資料 136 附錄A 138 以TRL校準之背對背結構量測與模擬結果比較圖 138 附錄B 145 B.1 移除基板合成波導第一組貫孔結合短路殘段之轉接結構優化 145 B.2 移除基板整合波導第一組貫孔結合短路殘段之轉接設計優化分析與驗證 146 附錄C 150 C.1 移除基板合成波導第一組貫孔之轉接設計之貫孔至參考面距離優化 150 附錄D 155 基板合成波導漏波計算 155 微帶線至低阻抗基板合成波導 155 微帶線至高阻抗基板合成波導 156 附錄E 157 背對背結構輻射損耗模擬結果比較 157 微帶線至低阻抗基板合成波導 157 微帶線至高阻抗基板合成波導 159

參考資料
[1] J. Rayas-Sanchez, and J. Jasso-Urzúa. “EM-Based Optimization of a Single Layer SIW with Microstrip Transitions using Linear Output Space Mapping,” 2009 IEEE MTT-S International Microwave Symposium Digest, pp.525-528, Jun 2009.
[2] Dominic Deslandes, “Design Equations for Tapered Microstrip-to-Substrate Integrated Waveguide Transitions,” 2010 IEEE MTT-S International Microwave Symposium, pp.704-707, May 2010.
[3] M. Abdolhamidi, A. Enayati, M. Shahabadi, and R. Faraji-Dana, “Wideband single-layer DC-decoupled substrate integrated waveguide (SIW)—to—Microstrip transition using an interdigital configuration”, 2007 Asia-Pacific Microwave Conference, pp. 1-4, Dec 2007.
[4] Z. Liu, and G.-B. Viao, “A New Transition for SIW and Microstrip Line” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), pp. 948-950, Nov 2013.
[5] H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, J.-C. Lee, “Ku-band transition between microstrip and substrate integrated waveguide (SIW)”, 2005 Asia-Pacific Microwave Conference Proceedings, pp. 1-4, Dec 2005.
[6] Z. Kordiboroujeni, and Jens Bornemann, “New Wideband Transition From Microstrip Line to Substrate Integrated Waveguide”, IEEE Transactions on Microwave Theory and Techniques, pp. 2983-2989, Nov 2014.
[7] E. Diaz Caballero, A. Belenguer Martinez, H. Esteban Gonzalez, O. Monerris Belda and V. Boria Esbert, “A Novel Transition from Microstrip to a Substrate Integrated Waveguide with Higher Characteristic Impedance”, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Jun 2013.
[8] H. H. Kao, “Compact and Broadband Microstrip Line to Rectangular Waveguide or Substrated-integrated Waveguide Transitions”, master’s degree thesis.
[9] D. M. Pozar, Microwave engineering. 3rd ed. New York: John Wiley & Sons, 2005.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 2025/08/04 (校外網路)
全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE