簡易檢索 / 詳目顯示

研究生: 蕭東駿
Tung-Chun Hsiao
論文名稱: 新型穿透式X光射線管之驅動電源系統設計與實現
Design and Implementation of a Power System for Driving a Novel Transmission-Target X-Ray Tube
指導教授: 林長華
Chang-Hua Lin
口試委員: 王見銘
Chien-Ming Wang
劉添華
Tian-Hua Liu
陳偉倫
Woei-Luen Chen
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 穿透式X光管球全橋式換流器高壓變壓器類比控制器數位控制器游離腔劑量
外文關鍵詞: transmission-target X-ray tube, full-bridge inverter, high-voltage transformer, analog controller, digital controller, ionization chamber
相關次數: 點閱:480下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製一部新型穿透式X光射線管之驅動電源系統,將其實際應用於和鑫生技(Nanoray)所生產之40 W穿透式管球,並在符合游離輻射防護法規之環境進行擊發與測試,以此驗證所提X光射線管電源系統之功能及可行性。首先,本文之電源系統分為高壓級(0 ~ ⎼ 80 kVDC)、燈絲加熱級(0 ~ 1.75 ADC)以及偏壓級(0 ~ 300 VDC),各級具備寬範圍輸出特性,以供應整體X光射線管之電源需求。再者,本文各級皆採用24 VDC供電,以利後續與電池供電裝置相容;在架構方面,主要包括:全橋式換流器、變壓器及整流電路,各級皆採相同架構設計,以簡化前級類比控制IC之種類。其次,在系統控制方面,利用數位控制器結合有線通訊模組以及人機介面,使用者可透過人機介面下達指令至數位控制器,根據鍵入之電壓設定值決定所需責任週期,並利用類比控制IC依據回授值調變責任週期,使得輸出電壓穩定,並達到所設定之輸出電壓值。此外,藉由電壓取樣電路,將取樣電壓回授值傳至數位控制器並回傳至電腦,使得人機介面可即時顯示當前各級之工作電壓。最後,本文推導系統之數學模式,建立完整之設計考量,以電腦模擬對應實測結果,並實際擊發X射線,且以游離腔劑量系統(ionization chamber)驗證所提系統之可行性。


This thesis aims at the research and development of the power system for driving an innovative transmission-target X-Ray Tube. This power system can be applied to the 40-Watt transmission-target X-Ray Tube developed by NanoRay Biotech Co. In the thesis, this power system of the transmission-target X-ray Tube is launched and tested in an environment compliant with “The Ionizing Radiation Protection Regulations” to validate its functionality and feasibility of the power system.
The power system in this thesis is divided into three levels, High-Voltage Level: (0 ~ –80 kVDC), Filament Heating Level: (0 ~ 1.75 ADC), and Bias Voltage Level: (0 ~ 300 VDC). Each level has a wide range of output variations to meet the power requirements for the overall X-ray tube.
Furthermore, in this thesis, the supplied-voltage of all levels is powered by 24 VDC to facilitate the cases if this product needs modifications to use the battery power in the future. About the topology, with the use of full-bridge inverters, transformers, and rectifier circuits, it allows each level to adopt the same topological design. This approach has simplified the variation and the quantity of the analog controller ICs in the front stage.
Secondary, in the system control, it utilizes a digital controller combined with a wired communication module and a human-machine interface. This allows the users to send commands to the digital controller through the human-machine interface of a computer. Based on the voltage setting entered by the user, the corresponding required for the duty cycle is decided. Comparing the feedback duty cycles with the calculated ones, the analog controller IC modulates the duty cycle to stabilize the output voltage as well as to achieve reaching the set value of the output voltage.
In addition, through the use of a voltage sampling circuit, the sampled voltage feedback is sent to the digital controller and thus returned to the computer for achieving a real-time display of the operating voltages of each level on the human-machine interface.
Finally, this thesis derives the mathematical model of the system, and establishes comprehensive design considerations. Through computer simulations with respect to the actual results, and verified by an ionization chamber for dose measurement with actual X-ray firings, the feasibility of proposed system is validated.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 4 1.3 論文架構 7 第二章 穿透式X光射線管驅動電源之架構分析 9 2.1 X光射線管電源系統之簡介 9 2.2 HV、Bias以及Heating各級架構介紹 10 2.3 全橋式換流器工作模式與數學分析 11 2.4 高壓變壓器之等效電路模型與數學分析 15 2.5 倍壓整流電路之工作模式與數學分析 20 2.6 橋式全波整流濾波器之工作模式與數學分析 26 2.7 輸出調控特性數學分析 30 第三章 週邊輔助系統與數位控制器之設計與分析 31 3.1 類比結合數位控制器之設計 31 3.1.2 類比控制器TL494之介紹 33 3.1.3 數位控制器PIC18F4550之介紹 35 3.1.4 類比結合數位控制器與週邊元件之連結 38 3.1.5 系統之控制流程 40 3.2 人機介面之設計與實現 42 3.2.2 通訊模式簡介 45 3.3 輸出回授取樣之架構 46 3.3.1 有線通訊應用於數位控制器輸出回授取樣之架構 46 3.3.2 類比控制器比較和調節 47 3.4 高壓電路之絕緣考量 49 3.4.1 空間直線距離與爬電距離之安全考量 50 3.4.2 絕緣油特性考量 56 3.4.3 輔助電源之絕緣考量 58 第四章 系統規格及設計考量 59 4.1 倍壓整流電路元件之規格選用及絕緣考量 60 4.2 橋式全波整流濾波器規格選用 61 4.3 HV級變壓器之繞製與絕緣考量 63 4.3.1 估計變壓器輸入功率 63 4.3.2 推算變壓器之Ap值及絕緣距離 64 4.3.3 計算線圈匝數 66 4.3.4 選用導線直徑 67 4.4 變壓器之等效電路模型參數提取及驗證 69 4.5 高速PWM之驅動電路設計 75 第五章 電路模擬與實測結果 77 5.1 系統規格 77 5.1.1 系統實測之環境建置 77 5.1.2 電腦模擬之條件 80 5.2 模擬與實測結果 81 5.2.1 模擬結果 82 5.2.2 實測結果 87 第六章 結論與未來展望 97 6.1 結論 97 6.2 未來展望 98 參考文獻 99

[1]F. Li, S. Wang, W. Hou and X. Qin, "Design and research on high voltage power supply of medical X-ray machine," 2016 IEEE International Conference on Mechatronics and Automation, Harbin, 2016.
[2]C. Schmidt, "3-D X-Ray Imaging With Nanometer Resolution for Advanced Semiconductor Packaging FA," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 5, pp. 745-749, May 2018.
[3]D. Mery, "X-Ray Testing by Computer Vision," 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, 2013.
[4]Y. Ogawa, N. Kondo, and S. Shibusawa, "Inside quality evaluation of fruit by X-ray image," Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 2003.
[5]W. Visser et al., "Automated comparison of X-ray images for cargo scanning," 2016 IEEE International Carnahan Conference on Security Technology (ICCST), Orlando, FL, 2016.
[6]J. J. Curry and B. Lafitte," X-Ray Absorption Imaging of High-Intensity Discharge Lamps Using an X-Ray Tube Source," IEEE Transactions on Plasma Science, vol. 36, no. 1, pp. 278-286, Feb. 2008.
[7]J. Kang et al., "Fast and Stable Operation of Carbon Nanotube Field-Emission X-Ray Tubes Achieved Using an Advanced Active-Current Control," IEEE Electron Device Letters, vol. 36, no. 11, pp. 1209-1211, Nov. 2015.
[8]Hsu, S. M., et al. "The physical and biomedical characteristics of the novel transmission type X-ray equipment." Radiation Measurements 90 (2016): 238-241.
[9]Wang, S. F., et al. "Respective radiation output characteristics of transmission-target and reflection-target X-ray tubes with the same beam quality." Radiation Physics and Chemistry 158 (2019): 188-193.
[10]K. Yambe, K. Konda, K. Ogura, and H. Sakakita, "Dependence of Plasma Plume Formation on Applied Voltage Waveform in Atmospheric-Pressure Plasma," IEEE Transactions on Plasma Science, vol. 44, no. 1, pp. 107-112, Jan. 2016.
[11]R. Baba and S. H. Jayaram, "An IGBT-Based Pulsed Power Supply in the Fabrication of Non-Contiguous Nanofibres Using Electrospinning," 2010 IEEE Industry Applications Society Annual Meeting, Houston, TX, 2010, pp. 1-4.
[12]K. Asano, F. Hatakeyama, and K. Yatsuzuka, "Fundamental study of an electrostatic chuck for silicon wafer handling," IEEE Transactions on Industry Applications, vol. 38, no. 3, pp. 840-845, May-June 2002.
[13]S. N. Vukosavić, L. S. Perić, and S. D. Sušić, "A Novel Power Converter Topology for Electrostatic Precipitators," IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 152-164, Jan. 2016.
[14]S. Jang, H. Ryoo, S. Ahn, J. Kim, and G. H. Rim, "Development and Optimization of High-Voltage Power Supply System for Industrial Magnetron," IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1453-1461, March 2012.
[15]S. Mohapatro and S. Allamsetty, "NOXabatement from filtered diesel engine exhaust using battery-powered high-voltage pulse power supply," High Voltage, vol. 2, no. 2, pp. 69-77, July. 2017.
[16]L. Katzir and D. Shmilovitz, "A Split-Source Multisection High-Voltage Power Supply for X-Ray," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 373-381, June 2016.
[17]S. N. Choudhary and Elangovan D, "High gain, naturally clamped Dc to Dc converter for X-ray application," 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Chennai, 2016, pp. 587-592.
[18]P. D. Dharmesh and D. Elangovan, "Soft switched DC-DC converter with high voltage gain," 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, Odisha, 2011, pp. 1-6.
[19]W. Hsu, J. Chen, Y. Hsieh, and Y. Wu, "Design and Steady-State Analysis of Parallel Resonant DC–DC Converter for High-Voltage Power Generator," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 957-966, Feb. 2017.
[20]J. S. Brugler, "Theoretical performance of voltage multiplier circuits," IEEE Journal of Solid-State Circuits, vol. 6, no. 3, pp. 132-135, June 1971.
[21]F. Hwang, Y. Shen, and S. H. Jayaram, "Low-Ripple Compact High-Voltage DC Power Supply," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1139-1145, Sept.-Oct. 2006.
[22]S. A. Teston, C. M. O. Stein, J. P. da Costa, E. G. Carati, R. Cardoso, and G. W. Denardin, "Comparison of diode full-bridge rectifier and voltage-doubling diode rectifier in the output stage of active-clamping current-fed half-bridge isolated DC-DC converter," 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, 2015, pp. 251-256.
[23]S. Ahn, H. Ryoo, J. Gong, and S. Jang, "Low-Ripple and High-Precision High-Voltage DC Power Supply for Pulsed Power Applications," IEEE Transactions on Plasma Science, vol. 42, no. 10, pp. 3023-3033, Oct. 2014.
[24]F. A. Dragonas, G. Neretti, P. Sanjeevikumar, and G. Grandi, "High-Voltage High-Frequency Arbitrary Waveform Multilevel Generator for DBD Plasma Actuators," IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3334-3342, July-Aug. 2015.
[25]吳義利, "切換式電源轉換器:原理與實用設計技術(實例設計導向)", 文笙書局。
[26]Anant S Kamath, Kannan Soundarapandian, High-voltage reinforced isolation: definitions and test methodologies datasheet, Texas Instruments
[27]Infineon Technologies, Electrical safety and isolation in high voltage discrete component applications and design hints, Application Note AN 2012-10 V1.0 October 2012.
[28]IEC 60950 safety specific standards datasheet
[29]GB4943 safety specific standards datasheet.
[30]C.E.I. , OX/100 X-Ray Tube, “OX/100”.
[31]AAMI TIR 69:2017 Risk Management Of Radio-Frequency Wireless Coexistence For Medical Devices And Systems datasheet
[32]ANSI C63.27-2017 American National Standard For Evaluation Of Wireless Coexistence datasheet.
[33]和鑫生技開發股份有限公司NanoRay Biotech Co., Ltd.官網。
[34]J. Zhang, W. G. Hurley, and W. H. Wölfle, "Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 342-350, Jan.-Feb. 2016.
[35]孙华敖,吴建平。 基于PWM技术的X荧光仪稳压电源设计[J]。 核电子学与探测技术, 2008(2):318-320。
[36]S. Iqbal, R. Besar and C. Venkataseshaiah, "Single/three-phase symmetrical bipolar voltage multipliers for X-ray power supply," 2008 Second International Conference on Electrical Engineering, Lahore, 2008.
[37]Taufik and J. J. Mullins, "Parallel Operation of Hybrid Loaded Resonant Converter Using Phase-Shift Control," 2006 IEEE International Symposium on Industrial Electronics, Montreal, Que., 2006.
[38]J. Sun, X. Ding, M. Nakaoka and H. Takano, "Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator," IEE Proceedings - Electric Power Applications, vol. 147, no. 6, pp. 527-534, Nov. 2000.
[39]International Atomic Energy Agency, "Diagnostic Radiology Physics", International Atomic Energy Agency: 93-95
[40]刘贤,"高频高压变压器等效电路模型参数提取方法研究", 2017年版中国工程物理研究院科技年报 2018。
[41]Yang Xiao-wei, Yan Ping, "35 kV/0.7 A high voltage variable frequency constant current capacitor charging power supply," High Voltage Engineering, 2006.
[42]Saijun Mao, Pengcheng Zhang, J. Popovic and J. A. Ferreira, "Diode reverse recovery analysis of Cockcroft-Walton voltage multiplier for high voltage generation," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017.
[43]John R. Rumble ,"CRC Handbook of Chemistry and Physics", CRC Press
[44]胡君臣,"高频变压器的设计与制作[J].",电器开关,2005 (1):8-11。
[45]美台磁材有限公司,ETD4917 cores datasheet。

無法下載圖示 全文公開日期 2033/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE