簡易檢索 / 詳目顯示

研究生: 鄭安傑
An-Chieh Cheng
論文名稱: 奈米雙晶銅圖案化晶圓之凹陷終點偵測分析於矽導微孔化學機械平坦化研究
Research on Endpoint Detection of Dishing in TSV CMP Process of Nano-twinned Copper Patterned Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 陳炤彰
Chao-Chang Chen
鄭雲謙
Yun-Chien Cheng
趙崇禮
Chong-Li Chao
張香鈜
Xiang-Hong Chang
黃中人
Jong-Ren Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 135
中文關鍵詞: 矽導微孔化學機械拋光終點偵測選擇比奈米雙晶銅圖案化晶圓凹陷階高
外文關鍵詞: TSV CMP, Endpoint Detection, Selectivity, Nano-twinned Copper Pattern Wafers, Dishing Depth
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用馬達扭矩量測系統於拋光製程中監測機台的扭矩訊號變化,以確保圖案化晶圓能夠更準確地停止於製程終點,最後建立一套適用於矽導微孔化學機械拋光(Trench Silicon via chemical mechanical polishing, TSV CMP)之終點偵測系統,達成圖案化晶圓於精拋後之表面粗糙度(Ra)小於5 nm,以及平均凹陷階高小於10 nm的製程目標。實驗將分為三個部分進行:第一部分,使用軟式複合墊搭配鹼性拋光液(D3586)分別對奈米雙晶銅與二氧化矽薄膜晶圓進行拋光實驗,透過拋光後之晶圓表面品質及選擇比分析的結果,為奈米雙晶銅圖案化晶圓選擇最合適的精拋參數,選用下壓力2 psi搭配轉速60/50 rpm的參數可獲得最佳的晶圓表面粗糙度改進率,奈米雙晶銅及二氧化矽薄膜晶圓的晶圓表面粗糙度改進率分別為15.76 %與18.03 %,以及較低的拋光選擇比0.47。第二部分,使用軟式複合墊搭配酸性拋光液(C8902)對奈米雙晶銅薄膜晶圓進行拋光實驗,為奈米雙晶銅圖案化晶圓選擇最合適的粗拋參數,選用下壓力3 psi搭配轉速60/50 rpm的參數可獲得最高的晶圓材料移除率1195.59 nm/min以及較佳的晶圓表面粗糙度改進率38.38%,並透過馬達扭矩量測系統觀察拋光製程中的扭矩訊號變化,分析過拋時間,並針對材料移除計算之終點與馬達扭矩訊號分析之終點進行驗證,以判別粗拋結束的時間點。第三部分,針對12吋奈米雙晶銅圖案化晶圓進行粗拋及精拋,藉由馬達扭矩訊號之變化分析粗拋製程終點,再藉由圖案化晶圓上不同材料之面積比計算材料移除體積,進而得出精拋的製程時間,以控制晶圓之凹陷階高,精拋後的奈米雙晶銅圖案化晶圓平均表面粗糙度(Ra)為2.33 nm,平均凹陷深度為6.99 nm,結果證實透過拋光參數與凹陷階高的控制得以符合最終的製程目標,未來可將其應用於矽導微孔化學機械拋光製程中,以提升整體的製程效率。


    This study aims to utilize a motor torque measurement system to establish endpoint detection during trench silicon via chemical mechanical polishing (TSV CMP) process, ensuring that TSV pattern wafers stop more accurately at specific dishing depth. The target is to develop a TSV CMP process, achieving a fine polishing surface roughness (Ra) of less than 5 nm and an average dishing depth less than 10 nm. Experiment consists of three parts. First, using a soft composite pad with an alkaline slurry (D3586), the optimal parameters in surface roughness improvement of 15.76% for nano-twinned copper and 18.03% for silicon dioxide, with a selectivity of 0.47. Second, using a soft composite pad with an acidic slurry (C8902), the optimal parameters for nano-twinned copper blanket wafers achieve the highest material removal rate (MRR) of 1195.59 nm/min and a surface roughness improvement rate of 38.38%. Torque signal variations during polishing are analyzed to determine the rough polishing endpoint. Finally, for 12-inch nano-twinned copper pattern wafers, both rough and fine polishing are performed. The endpoint of the rough polishing process is determined by analyzing the variations in motor torque signals. Subsequently, the material removal volume is calculated based on the area ratios of different materials on the pattern wafer. This calculation is then used to determine the endpoint of the fine polishing process, to control the dishing of nano-twinned copper patterned wafers. Results have achieved a surface roughness of 2.33 nm and dishing depth of 6.99 nm after fine polishing, demonstrating that by controlling the parameters and dishing, the final target is achieved. In the future, it can be used in the TSV CMP process to enhance the process efficiency.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 符號表 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 3 1.3 論文架構 4 第二章 文獻回顧 6 2.1 矽導微孔製程應用 6 2.2 拋光墊指標和CMP選擇比分析相關文獻 11 2.3 終點偵測相關文獻 18 2.4 文獻回顧總結 25 第三章 TSV製程介紹與圖案化晶圓之凹陷控制 26 3.1 CMP與TSV CMP製程比較 26 3.2 TSV薄膜與圖案化晶圓 29 3.2.1 二氧化矽薄膜晶圓 29 3.2.2 奈米雙晶銅薄膜晶圓 30 3.2.3 12吋奈米雙晶銅圖案化晶圓 33 3.3 圖案化晶圓之粗拋終點分析 35 3.4 圖案化晶圓之凹陷控制 40 第四章 拋光墊性能分析 45 4.1 拋光墊之分類與物性測試 45 4.1.1 拋光墊硬度與結構分析 45 4.1.2 拋光墊壓縮率與壓縮回彈率分析 47 4.1.3 拋光墊接觸角分析 49 4.1.4 拋光墊表面粗糙度與承載面積比參數分析 50 4.1.5 拋光墊微結構分析 51 4.1.6 拋光墊性能分析總結 52 4.2 拋光墊承載面積比參數分析 53 第五章 TSV CMP實驗設備與規劃 55 5.1 實驗設備 55 5.1.1 HAMAI HS-720C精密拋光機 55 5.1.2 馬達扭矩量測系統 56 5.1.3 整合式修整搖臂 58 5.2 量測設備 59 5.3 實驗耗材 60 5.3.1 軟式複合墊 60 5.3.2 晶圓 61 5.3.3 拋光液 62 5.3.4 修整設備 65 5.4 TSV CMP實驗規劃 66 第六章 TSV CMP實驗結果與討論 71 6.1 實驗A : 奈米雙晶銅與二氧化矽薄膜晶圓拋光選擇比分析 71 6.1.1 40 × 40 mm2奈米雙晶銅薄膜晶圓材料移除率分析(D3586) 72 6.1.2 40 × 40 mm2二氧化矽薄膜晶圓材料移除率分析(D3586) 74 6.1.3 晶圓拋光前後表面粗糙度分析(D3586) 77 6.1.4 拋光選擇比參數分析 81 6.2 實驗B : 40 × 40 mm2奈米雙晶銅薄膜晶圓拋光終點偵測 83 6.2.1 40 × 40 mm2奈米雙晶銅薄膜晶圓材料移除率分析(C8902) 84 6.2.2 晶圓拋光前後表面粗糙度分析(C8902) 86 6.2.3 晶圓過拋時間測試 88 6.2.4 材料移除與馬達扭矩拋光製程終點分析驗證 94 6.3 實驗C : 12吋奈米雙晶銅圖案化晶圓拋光終點偵測 99 6.3.1 奈米雙晶銅圖案化晶圓粗拋實驗 100 6.3.2 奈米雙晶銅圖案化晶圓精拋實驗 107 6.4 綜合結果與討論 111 第七章 結論與建議 113 7.1 結論 113 7.2 建議 114 參考文獻 115 附錄A 晶圓材料性質檢測 118 附錄B 實驗量測設備 120 附錄C 奈米雙晶銅薄膜晶圓拋光前後Sa (nm) 124 附錄D 二氧化矽薄膜晶圓拋光前後Sa (nm) 130 附錄E HAMAI HS-720C拋光機搖擺功能說明 134

    [1] R. Riko, "More-than-Moore Technology Opportunities: 2.5 D SiP. More-than-Moore 2.5 D and 3D SiP Integration," 2017, 5-67.
    [2] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士論文, 國立臺灣科技大學, 2018.
    [3] 王柏凱, "雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎形維度和承載比分析," 碩士論文, 國立臺灣科技大學, 2013.
    [4] 溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究," 碩士論文, 國立臺灣科技大學, 2014.
    [5] 蔡明城, "開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究," 碩士論文, 國立臺灣科技大學, 2016.
    [6] 廖秉鋐, "銅膜化學機械拋光之軟拋墊磨耗率與性能分析研究," 碩士論文, 國立臺灣科技大學, 2021.
    [7] J. C. Chen, "Effects of slurry in Cu chemical mechanical polishing (CMP) of TSVs for 3-D IC integration," IEEE transactions on components, packaging and manufacturing technology, vol. 2, no. 6, pp. 956-963, 2012, doi: 10.1109/TCPMT.2011.2177663.
    [8] J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, "An overview of through-silicon-via technology and manufacturing challenges," Microelectronic Engineering, vol. 135, pp. 73-106, 2015/03/05/ 2015, doi: https://doi.org/10.1016/j.mee.2014.10.019.
    [9] D. H. Cho, S. M. Seo, J. B. Kim, S. H. Rajendran, and J. P. Jung, "A review on the fabrication and reliability of three-dimensional integration technologies for microelectronic packaging: Through-Si-via and solder bumping process," Metals, vol. 11, no. 10, p. 1664, 2021, doi: https://doi.org/10.3390/met11101664.
    [10] J. Shilan, "Vibration signal-assisted endpoint detection for long-stretch, ultraprecision polishing processes," Journal of Manufacturing Science and Engineering, 2023, 145.6: 061007.
    [11] T. Kojima, M. Miyajima, F. Akaboshi, T. Yogo, S. Ishimoto, and A. Okuda, "Application of CMP process monitor to Cu polishing," IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 3, pp. 293-299, 2000.
    [12] T. K. Das, R. Ganesan, A. K. Sikder, and A. Kumar, "Online End Point Detection in CMP Using SPRT of Wavelet Decomposed Sensor Data," IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 3, pp. 440-447, 2005.
    [13] 蔡岳勳, "電致動力應用於銅化學機械拋光平坦化效應研究," 碩士論文, 國立臺灣科技大學, 2015.
    [14] H. K. Li, X. C. Lu, and J. B. Luo, "Motor Power Signal Analysis for End-Point Detection of Chemical Mechanical Planarization," (in English), Micromachines, vol. 8, no. 6, Jun 2017.
    [15] 廖紘毅, "銅膜晶圓化學機械拋光之終點偵測研究," 碩士論文, 國立臺灣科技大學, 2020.
    [16] M. Dina, Dessouky, Mohamed, Khalil, Diaaeldin, "Addressing Latch-up Verification Challenges of 2.5 D/3D Technologies." In: 2020 42nd Annual EOS/ESD Symposium (EOS/ESD). IEEE, 2020. p. 1-7.
    [17] S. C. Chen, "Implementation of memory stacking on logic controller by using 3DIC 300mm backside TSV process integration." In: 2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2016. p. 1-2.
    [18] N. Belkhir, T. Aliouane, and D. Bouzid, "Correlation between contact surface and friction during the optical glass polishing," Applied Surface Science, vol. 288, pp. 208 214, 2014.
    [19] S. Suda, T. Sugimoto, A. Masuda, F. Sagane, "Surface Conductivity of Ceria Abrasives During Glass Polishing," ICPT2014, 2014.
    [20] Y. C. Zhu, "Study of interconnects in 3D IC packaging: microbump reliability and Cu-to-Cu direct bonding," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2017.
    [21] X. Y. Liu, "Study of Grain Growth of <111> Nanotwinned Copper on <100>-oriented and Random Copper Films," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2017.
    [22] K. M. So, "Tuning Microstructure of Nanotwinned Cu by Electroplating Waveforms for Low Temperature Cu-Cu Direct Bonding," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2022.
    [23] C. J. Shute, "Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins," Acta Materialia, vol. 59, no. 11, pp. 4569-4577, 2011/06/01/ 2011, doi: https://doi.org/10.1016/j.actamat.2011.04.002.
    [24] J. Y. Juang, "Copper-to-copper direct bonding on highly (111) oriented and nano-twinned copper in no-vacuum ambient," Doctor, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2018.
    [25] M. A. Moore, "A review of two-body abrasive wear," Wear, vol. 27, no. 1, pp. 1-17, 1974/01/01/ 1974, doi: https://doi.org/10.1016/0043-1648(74)90080-5.
    [26] 蕭百成, "銅化學機械平坦化之軟拋光墊性能指標分析研究," 碩士論文, 國立臺灣科技大學, 2019.
    [27] 林峻宇, "拋光墊表面微突起接觸面積對銅薄膜晶圓化學機械拋光之影響研究," 碩士論文, 國立臺灣科技大學, 2022.
    [28] 蕭凱翔, "軟式複合墊3D模型對奈米雙晶銅圖案化晶圓矽導微孔化學機械拋光分析研究," 碩士論文, 國立臺灣科技大學, 2023.
    [29] 鍾誠, "電致動力輔助化學機械平坦化應用於奈米雙晶銅圖案化晶圓平坦化研究," 碩士論文, 國立臺灣科技大學, 2021.

    無法下載圖示 全文公開日期 2026/08/15 (校內網路)
    全文公開日期 2026/08/15 (校外網路)
    全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE