|
[1] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose: Realtime multi-person 2d poseestimation using part affinity fields,”IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2019. [2] R. A. Güler, N. Neverova, and I. Kokkinos, “DensePose: Dense human pose estimation in the wild,”Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2018. [3] T. C. Wang, M. Y. Liu, J. Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro, “Video-to-video syn-thesis,”Advances in Neural Information Processing Systems, vol. 2018-December, 2018. [4] Yulia, “Transition motion synthesis for video-based text to asl,” Master’s thesis, National TaiwanUniversity of Science and Technology, 2019. [5] Z. Li and A. Aaron, “Toward a practical perceptual video quality metric.”https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652,6 2016. [6] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from errorvisibility to structural similarity,”IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. [7] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality as-sessment,” inThe Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003, vol. 2,pp. 1398–1402 Vol.2, 2003. [8] W. H. Organization, “Deafness and hearing loss..”https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss, 2020. [9] W. Sandler and D. Lillo-Martin,Sign Language and Linguistic Universals. Cambridge UniversityPress, 2006. [10] W. F. of the Deaf, “Our work.”http://wfdeaf.org/our-work/, 2018. [11] S. Krapež and F. Solina, “Synthesis of the sign language of the deaf from the sign video clips,”Elek-trotehniski Vestnik/Electrotechnical Review, vol. 66, 1999. [12] M. Borg and K. P. Camilleri, “Phonologically-meaningful subunits for deep learning-based sign lan-guage recognition,” inECCV 2020 Workshop on Sign Language Recognition, Translation and Pro-duction., 2020. [13] E. P. D. Silva, P. Dornhofer, P. Costa, K. Mamhy, O. Kumada, J. M. D. Martino, and G. A. Florentino,“Recognition of affective and grammatical facial expressions: a study for brazilian sign language,” inECCV 2020 Workshop on Sign Language Recognition, Translation and Production., 2020.55 [14] M. Parelli, K. Papadimitriou, G. Potamianos, G. Pavlakos, and P. Maragos, “Exploiting 3d hand poseestimation in deep learning-based sign language recognition from rgb videos,” inECCV 2020 Work-shop on Sign Language Recognition, Translation and Production., 2020. [15] X. Liang, A. Angelopoulou, E. Kapetanios, B. Woll, R. Al-Batat, and T. Woolfe, “A multi-modalmachine learning approach and toolkit to automate recognition of early stages of dementia amongbritish sign language users,” inECCV 2020 Workshop on Sign Language Recognition, Translationand Production., 2020. [16] C. Gökçe, O. G. Gulcan ̈ozdemir, A. A. K. Glu, and L. Akarun, “Score-level multi cue fusion forsign language recognition,” inECCV 2020 Workshop on Sign Language Recognition, Translationand Production., 2020. [17] S. Stoll, N. C. Camgoz, S. Hadfield, and R. Bowden, “Text2sign: Towards sign language produc-tion using neural machine translation and generative adversarial networks,”International Journal ofComputer Vision, vol. 128, 2020. [18] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”CoRR, 2014. [19] R. Elliott, J. R. Glauert, J. R. Kennaway, and I. Marshall, “The development of language processingsupport for the ViSiCAST project,”Annual ACM Conference on Assistive Technologies, Proceedings,2000. [20] I. Zwitserlood, M. Verlinden, J. Ros, and S. Schoot, “Synthetic signing for the deaf: Esign.” http://www.visicast.cmp.uea.ac.uk/Papers/Synthetic01 2005. [21] M. Papadogiorgaki, N. Grammalidis, D. Tzovaras, and M. G. Strintzis, “Text-to-sign language syn-thesis tool,”13th European Signal Processing Conference, EUSIPCO 2005, 2005. [22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, andY. Bengio, “Generative adversarial nets,”Advances in Neural Information Processing Systems, vol. 3,2014. [23] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutionalgenerative adversarial networks,”International Conference on Learning Representations, 11 2016. [24] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”34th Inter-national Conference on Machine Learning, ICML 2017, vol. 1, 2017. [25] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarialnetworks,”Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR2017, vol. 2017-January, 2017. [26] A. M. Martínez, R. B. Wilbur, R. Shay, and A. C. Kak, “Purdue rvl-slll asl database for automaticrecognition of american sign language,”Proceedings - 4th IEEE International Conference on Multi-modal Interfaces, ICMI 2002, 2002.56 [27] V. Athitsos, C. Neidle, S. Sclaroff, J. Nash, A. Stefan, Q. Yuan, and A. Thangali, “The american signlanguage lexicon video dataset,”2008 IEEE Computer Society Conference on Computer Vision andPattern Recognition Workshops, CVPR Workshops, 2008. [28] P. Lu and M. Huenerfauth, “Collecting and evaluating the cuny asl corpus for research on americansign language animation,”Computer Speech and Language, vol. 28, 2014. [29] C. Chen, B. Zhang, Z. Hou, J. Jiang, M. Liu, and Y. Yang, “Action recognition from depth sequencesusing weighted fusion of 2d and 3d auto-correlation of gradients features,”Multimedia Tools andApplications, vol. 76, 2017. [30] J. Forster, C. Schmidt, T. Hoyoux, O. Koller, U. Zelle, J. Piater, and H. Ney, “Rwth-phoenix-weather:A large vocabulary sign language recognition and translation corpus,”Proceedings of the 8th Inter-national Conference on Language Resources and Evaluation, LREC 2012, 2012. [31] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition: Towards large vocabularystatisticalrecognitionsystemshandlingmultiplesigners,”ComputerVisionandImageUnderstanding,vol. 141, 2015. [32] M. Oszust and M. Wysocki, “Polish sign language words recognition with kinect,”2013 6th Interna-tional Conference on Human System Interactions, HSI 2013, 2013. [33] F. Quiroga, “Sign language recognition datasets.”http://facundoq.github.io/guides/sign_language_datasets/slr, 2020. [34] J. Min and J. Chai, “Motion graphs++: A compact generative model for semantic motion analysis andsynthesis,”ACM Transactions on Graphics, vol. 31, 2012. [35] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in single images using mul-tiview bootstrapping,”Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recog-nition, CVPR 2017, vol. 2017-January, 2017. [36] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0: Evolution ofoptical flow estimation with deep networks,”Proceedings-30thIEEEConferenceonComputerVisionand Pattern Recognition, CVPR 2017, vol. 2017-January, 2017. [37] NVIDIA, “NVIDIA container toolkit.”https://github.com/NVIDIA/nvidia-docker, 2015. [38] D. Merkel, “Docker: lightweight linux containers for consistent development and deployment,”Linuxjournal, vol. 2014, no. 239, p. 2, 2014. [39] S. Tomar, “Converting video formats with ffmpeg,”Linux Journal, vol. 2006, no. 146, p. 10, 2006. [40] M. Tavakoli, R. Batista, and L. Sgrigna, “The UC Softhand: Light weight adaptive bionic hand witha compact twisted string actuation system,”Actuators, vol. 5, p. 1, 12 2015. |