|
[1] E. Fonseca, and A. Festag, “A Survey of Existing Approaches for Secure Ad Hoc Routing and Their Applicability to VANETS”, NEC Technical Report, 2006. [2] M. Raya, and J. Hubaux, “Securing vehicular ad hoc networks”, Journal of Computer Security, Vol. 15, pp. 39-68, 2007. [3] Advanced Safety Vehicle Program, http://www.ahsra.or.jp/. [4] Communications for eSafety, http://www.comesafety.org/. [5] Vehicle Safety Communications Project, http://www-nrd.nhtsa.dot.gov/. [6] Vehicle Infrastructure Initiative, http:/its.dot.gov/vii/. [7] Car-to-Car Communications, http://www.car-to-car.org/. [8] Security of Vehicular Networks@EPFL, http://ivc.epfl.ch/. [9] Z. Wang, and C. Chigan, “Cooperation Enhancement for Message Transmission in VANETs”, Wireless Personal communications, Vol. 43, pp. 141-156, 2007. [10] M. Raya, P. Papadimitrators, I. Aad, D. Jungels, and J.P. Hubaux, “Eviction of Misbehaving and Faulty Nodes in Vehicular Networks”, IEEE Journal on selected areas in communications, Vol. 25, No.8, pp. 1557-1568, 2007. [11] A. Patwardhan, A. Joshi, T. Finin, and Y. Yesha, “A Data Intensive Reputation Management Scheme for Vehicular Ad Hoc Networks”, Internetal Conference on Mobile and Ubiquitous Systems, pp. 1-8, 2006. [12] C. Zhang, X. Lin, R. Lu, and PH. Ho, “RAISE: An Efficient RSU-aided Message Authentication Scheme in Vehicular Communication Networks”, ICC’08 IEEE International Conference, pp. 1454-1457, 2008. [13] M. Raya, A. Aziz, and JP. Hubaux, “Efficient Secure Aggregation in VANETs”, Proceedings of the 3rd international workshop on Vehicular ad hoc networks, pp. 67-75, 2006. [14] X. Hong, D. Huang, M. Gerla, and Z. Cao, “SAT: Situation-Aware Trust Architecture for Vehicular Networks”, Proceedings of the 3rd international workshop on Mobility in the evolving internet architecture, pp. 31-36, 2008. [15] F. Kong, and J. Tan, “A Collaboration-based Hybrid Vehicular Sensor Network Architecture”, Information and Automation , pp. 584-589, 2008. [16] J-L Wang and S-P Huang, “Fuzzy Logic Based Reputation System for Mobile Ad Hoc Networks”, Lecture Notes in Computer Science, Vol. 4693, pp. 1315-1322, 2007. [17] T. Anantvalee and J. Wu, “Reputation-Based System for Encouraging the Cooperation of Nodes in Mobile Ad Hoc Networks”, IEEE International Conference on Communications (ICC’07), pp. 3383-3388, 2007. [18] N. Nasser, and Y. Chen, “Enhanced Intrusion Detection System for Discovering Malicious Nodes in Mobile Ad hoc Networks”, ICC '07 IEEE International Conference of Communications, pp. 1154-1159, 2007. [19] W. Yu, Y. Sun, and K.Liu, “HADOF: Defense Against Routing Disruptions in Mobile Ad Hoc Networks”, Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, Vol. 2, pp. 1252-1261, 2005. [20] L. Tamilselvan, and V. Sankaranarayanan, “Prevention of Co-operative Black Hole Attack in MANET”, JOURNAL OF NETWORKS, Vol. 3, No. 5, pp. 13-20, 2008. [21] A. Boukerche, and Y. Ren, “A Security Management Scheme Using a Novel Computational Reputation Model for Wireless and Mobile Ad hoc Networks”, Proceedings of the 5th ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 88-95, 2008. [22] Y. Ren, and A. Boukerche, “Modeling and Managing the Trust for Wireless and Mobile Ad Hoc Networks”, Proceddings of IEEE International Conference on Communications, pp. 2129-2133, 2008. [23] F. Dotzer, L. Fischer, and P. Magiera, “VARS: A Vehicle Ad-hoc network Reputation System”, In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMOM’05), pp. 454-456, 2005. [24] D. B. Johnson, D. A. Maltz, Y. C. Hu, and J. G. Jetcheva, “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks,” IETF MANET WG Internet draft, 2000. [25] L. Tamilselvan, and V. Sankaranarayanan, “Prevention of Impersonation Attack in Wireless Mobile Ad hoc Networks”, International Journal of Computer Science and Network Security, Vol. 7, No. 3, pp. 118-123, 2007. [26] J. Sun, C. Zhang, and Y. Fang, “AN ID-BASED FRAMEWORK ACHIEVING PRIVACY AND NON-REPUDIATION IN VEHICULAR AD HOC NETWORKS”, IEEE Military Communications Conference, pp. 1-7, 2007. [27] Y. Sun, Z. Han and K. J. R. Liu, "Defense of trust management vulnerabilities in distributed networks", IEEE Communications Magazine, Vol. 46, No. 2, pp. 112, 2008. [28] G. Theodorakopoulos and J. S. Baras, "On trust models and trust evaluation metrics for ad hoc networks", IEEE Journal on Selected Areas in Communications, Vol. 24, No. 2, pp. 318-328, 2006. [29] K. Fall and K. Varadhan, “The ns Manual (formerly ns Notes and Documentation),” The VINT Project, Vol. 1, 2002. [30] C. Perkins, E. Belding-Royer, and S. Das, “RFC2561: Ad hoc On-Demand Distance Vector (AODV) Routing”, Internet RFC3561 experimental Standard, July, 2003. [31] Nai-Wei Lo and H.-C Tsai, “Illusion Attack on VANET Applications – A Message Plausibility Problem,” Dept. of Information Management, NTUST, Technical Report, 2007.
|