簡易檢索 / 詳目顯示

研究生: 黃育璿
Yu-Hsuan Huang
論文名稱: 噴霧熱裂解法及噴霧乾燥法對Tb 摻雜 Y4SiAlO8N 粉末形貌及螢光性質之研究
Correlation of morphology and photoluminescence properties for Tb-doped Y4SiAlO8N powder by spray pyrolysis and spray drying method
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 149
中文關鍵詞: 噴霧熱裂解法噴霧乾燥法螢光粉造粒晶粒尺寸發光強度
外文關鍵詞: Spray pyrolysis, Spray drying, Phosphor, Granulation, Grain size, Emission intensity
相關次數: 點閱:266下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白光發光二極體(White Light Emitting Diode, W-LED)是一項發展成熟的技術,產品已廣泛應用於居家及工業照明,而其最主流的成分配置為鈰(Cerium, Ce)摻雜釔鋁石榴石(Y3Al5O12, YAG)之黃光螢光粉搭配藍光晶粒(Blue chip),但其極差的演色性(Color rendering)不利於應用在未來的超高畫質電視(Ultra High Definition Television, UHDTV),其中在綠光的部分尤其明顯,除此之外,螢光粉不規則的形貌及不均勻的粒徑大小,皆會使得粉體在封裝膠內的沉澱速率增加,最終造成發光色度不均及產品壽命縮短等問題,故合成特定形貌且大小相似的綠色螢光粉為本研究的首要目標。
    本實驗使用熱穩定性極佳的Y4SiAlO8N作為螢光粉的主體(Host)材料,並摻雜2%鋱(Terbium, Tb)離子作為活化劑(Activator),製備出發高純度綠光的新型螢光粉,合成方式選用噴霧熱裂解法(Spray pyrolysis, SP)製作次微米級(Submicron)球狀螢光粉,並改變其煅燒溫度及前驅液濃度,最終選擇0.05M Y3.92SiAlO8N:0.08Tb3+及1600℃的煅燒溫度作為SP合成粉體的最佳製程參數,然而,過小的顆粒造成粉體間因Van Der Waal force產生團聚,因此本研究將20.0 wt%的SP前驅物粉體混入高分子添加物,配置成漿料(Slurry),利用噴霧乾燥法(Spray drying, SD)將初始粉體造粒(Granulation)成18.847.06m的中空(Hollow)球狀顆粒,後利用二階段煅燒將高分子移除,得到中空球狀且發光性質優良的Y3.92SiAlO8N:0.08Tb3+造粒螢光粉末。
    各階段粉末的實驗結果分別利用X光繞射儀(X-ray diffractometer, XRD)觀察粉體相組成及計算晶粒尺寸,並利用聚焦離子速顯微系統(Focus Ion Beam system, FIB)探討顆粒表面及橫截面形貌,亦使用光學顯微鏡(Optical Mircoscope)觀測團聚粉體的粒徑分布,最後利用螢光光譜儀(Fluorescence Spectrometer)檢測其發光性質,以此判定不同螢光粉體的綠光強度。


    White Light Emitting Diode(W-LED) is a kind of mature technology. Many products have been widely used in home and industrial illumination. The mainstream setting of the W-LED is yellow phosphor powder(Ce doped YAG) matched with blue chip. However, its extremely poor color rendering is not conductive to application in Ultra High Definition Television(UHDTV) in the future, especially in the green light. In addition, the phosphor powder’s sedimentation rate in encapsulant would be influenced by the irregular shape and ununiform particle size distribution, which will eventually cause the problems like uneven luminous chromaticity and shortened the lifetime of the product. Therefore, the synthesis of the green phosphor with specific shape and similar particle size is the primary goal of this research.
    For the purpose to prepare a novel phosphor which can emit high purity green light in this experiment, we selected Y4SiAlO8N as the host material, because of its excellent thermal stability. Doping with 2% Tb(Terbium) as the activator, because of its narrow emission peak For synthesis method, we selected spray pyrolysis in order to synthesis submicron spherical phosphor powder, adjust the calcination temperature and precursor concentration. Finally, the experimental results showed that 0.05M Y3.92SiAlO8N:0.08Tb3+ calcined at 1600℃ is the optimal process parameter of SP synthetic powder. However, the excessively small particles cause the powder to agglomerate due to the Van Der Waal force. Therefore, 20.0 wt% of SP precursor powder was mixed with a polymer additive as a slurry, and used spray drying method to granulate the precursor particle into hollow spherical, the particle size is around 18.847.06m. Then, the polymer was removed by two stage calcination process to obtain the hollow spherical Y3.92SiAlO8N:0.08Tb3+ granulated phosphor powder with excellent luminescence properties.
    The experimental results of the powders were observed with X-ray diffractometer(XRD), for the function of analyzed the powder phase composition and calculate the grain size. The focus ion beam system(FIB) was used to explore the particle’s surface and cross-sectional morphology. Optical microscope(OM) was also used to observe the particle size distribution of the agglomerated powder, and finally, the luminescence property was detected by the Flourescence spectrometer(PL) to determine the green light emission intensity of different phosphor powders.

    摘要 i Abstract iii 誌謝 v 目錄 vii 圖目錄 x 表目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 固態照明技術(Solid State Lighting, SSL) 3 2.2 螢光材料(Luminescent materials) 12 2.2.1 高分子螢光材料(Fluorescent polymers) 12 2.2.2 量子點螢光材料(Quantum dot phosphors) 13 2.2.3 無機螢光材料(Inorganic luminescent materials) 15 2.3 螢光粉(Phosphor powder) 17 2.3.1 發光機制(Luminous mechanism) 17 2.3.2 YSIALON螢光粉(YSIALON phosphor powder) 19 2.3.3 螢光粉沉澱現象(Phosphor powder sedimentation phenomenon) 22 2.3.4 中空球型螢光粉(Hollow spherical phosphor powder) 23 2.4 球型螢光粉末合成方法(Synthesized of spherical phosphor powder) 26 2.4.1噴霧熱裂解法(Spray pyrolysis method) 27 2.4.2噴霧乾燥法(Spry drying method) 33 第三章 實驗方法與目的 42 3.1 實驗設計 42 3.1.1 噴霧熱裂解法製程選定(Spray pyrolysis process selection) 43 3.1.2 噴霧乾燥法製程選定(Spray pyrolysis process selection) 44 3.1.3 煅燒溫度(Calcination temperature) 45 3.1.4 前驅液濃度(Precursor concentration) 46 3.1.5 造粒製程(Granulation process) 47 3.2 實驗藥品 50 3.3 實驗儀器設備 51 3.4 樣品製備流程 52 3.5 樣品性質及分析方法 54 3.5.1 X光晶體繞射分析儀(X-ray diffractometer) 54 3.5.2 聚焦離子束顯微系統(Dual beam field emission system) 57 3.5.3 光學顯微鏡(Optical Microscope) 63 3.5.4 螢光光譜儀(Fluorescence Spectrometer) 64 第四章 實驗結果 66 4.1 不同煅燒溫度對0.05M Y3.92SiAlO8N:0.08Tb3+螢光粉發光強度之影響 68 4.1.1 不同煅燒溫度之Y3.92SiAlO8N:0.08Tb3+螢光粉相組成與晶粒尺寸(XRD) 69 4.1.2 不同煅燒溫度之Y3.92SiAlO8N:0.08Tb3+螢光粉表面形貌(FIB) 73 4.1.3 不同煅燒溫度之Y3.92SiAlO8N:0.08Tb3+螢光粉化學組成(EDS) 75 4.1.4 不同煅燒溫度之Y3.92SiAlO8N:0.08Tb3+螢光粉巨觀形貌及粒徑分布(OM) 77 4.1.5 不同煅燒溫度之Y3.92SiAlO8N:0.08Tb3+螢光粉發光性質(PL) 80 4.2 不同前驅液濃度對Y3.92SiAlO8N:0.08Tb3+螢光粉發光強度之影響 82 4.2.1 不同前驅液濃度Y3.92SiAlO8N:0.08Tb3+螢光粉之相組成與晶粒尺寸(XRD) 82 4.2.2 不同前驅液濃度Y3.92SiAlO8N:0.08Tb3+螢光粉之表面形貌(FIB) 85 4.2.3 不同前驅液濃度Y3.92SiAlO8N:0.08Tb3+螢光粉之化學組成(EDS) 88 4.2.4 不同前驅液濃度Y3.92SiAlO8N:0.08Tb3+螢光粉之巨觀形貌及粒徑分布(OM) 90 4.2.5 不同前驅液濃度Y3.92SiAlO8N:0.08Tb3+螢光粉之發光性質(PL) 95 4.3 不同熱處理對Y3.92SiAlO8N:0.08Tb3+造粒螢光粉之性質探討 98 4.3.1 造粒Y3.92SiAlO8N:Tb3+螢光粉之相組成與晶粒尺寸(XRD) 98 4.3.2 造粒Y3.92SiAlO8N:Tb3+螢光粉之表面及橫截面形貌(FIB) 102 4.3.3 造粒Y3.92SiAlO8N:Tb3+螢光粉之粒徑分布(FIB) 105 4.3.4 造粒Y3.92SiAlO8N:Tb3+螢光粉之化學組成(EDS) 106 4.3.5 造粒Y3.92SiAlO8N:Tb3+螢光粉之發光性質(PL) 108 第五章 結果討論 111 5.1 煅燒溫度對發光強度之影響探討 113 5.2 煅燒溫度對團聚粉體之形貌影響探討 116 5.3 造粒螢光粉體成型機制探討 118 第六章 結論 120 第七章 未來工作 124 參考文獻 125

    [1] G.-J. Wang, D.-J. Pan, T. Xu, G.-X. Xiang, Z.-J. Zhang, H.T. Hintzen, J.-T. Zhao, Y. Huang, Photoluminescence properties and energy level of RE (RE= Pr, Sm, Tb, Er, Dy) in Y4Si2O7N2, J. Alloys Compd, 708 (2017) 154-161.
    [2] R. Karlicek, C.-C. Sun, G. Zissis, R. Ma, Handbook of advanced lighting technology, Springer2017.
    [3] Y. Hua, D. Zhang, H. Ma, D. Deng, S. Xu, Synthesis, luminescence properties and electronic structure of Tb 3+-doped Y 4− x SiAlO 8 N: x Tb 3+–a novel green phosphor with high thermal stability for white LEDs, RSC Adv., 6 (2016) 113249-113259.
    [4] 許育賓, 徐大正, 丁逸聖, 林群哲, 解榮軍, 廣崎尚登, 黃振東, 陳海英, 肖國偉, 蘇宏元, 白光發光二極體製作技術-由晶粒金屬化至封裝, 全華圖書股份有限公司2008.
    [5] 郭浩中, 賴芳儀, 郭守義, LED原理與應用(Principles and Applications of Light-emitting Diode), 五南圖出版股份有限公司.
    [6] 陳隆建, LED元件與產業概況, 五南圖書出版股份有限公司.
    [7] N. None, US Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate Final Report, EERE Publication and Product Library, Washington, DC (United States), 2002.
    [8] I.E. Agency, Key world energy statistics, International Energy Agency Paris2007.
    [9] J. Laustsen, Energy efficiency requirements in building codes, energy efficiency policies for new buildings. IEA Information Paper, 2008.
    [10] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied physics letters, 51 (1987) 913-915.
    [11] S.P. Singh, Y. Mohapatra, M. Qureshi, S. Sundar Manoharan, White organic light-emitting diodes based on spectral broadening in electroluminescence due to formation of interfacial exciplexes, Applied Physics Letters, 86 (2005) 113505.
    [12] 跨克顯示網, 大尺寸OLED面板與大尺寸LCD面板成本比較, 2018.
    [13] J. Phillips, P. Burrows, R. Davis, J. Simmons, G. Malliaras, F. So, J. Misewich, A. Nurmikko, D. Smith, J. Tsao, Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006, DOESC (USDOE Office of Science (SC)), 2006.
    [14] 自由時報, 三星可彎曲OLED手機 傳明年初上市, 2016.
    [15] Bharti, Field Emission Display, 2015.
    [16] Wikipedia, Field-emission display.
    [17] A. Porth, P. Comitatus, Tea Party Movement, Leadership, 5 (2015) 1.
    [18] R. Fink, Z. Yaniv, A closer look at SED, FED technologies, EE Tines-Asia, (2007) 1-4.
    [19] S. Hui, S.N. Li, X.H. Tao, W. Chen, W. Ng, A novel passive offline LED driver with long lifetime, IEEE Trans. Power Electron., 25 (2010) 2665-2672.
    [20] 潘錫明, 發光二極體:認識發光二極體, 2009.
    [21] M.-H. Chang, D. Das, P. Varde, M. Pecht, Light emitting diodes reliability review, Microelectron Reliab, 52 (2012) 762-782.
    [22] Y. Jiang, Y. Li, Y. Li, Z. Deng, T. Lu, Z. Ma, P. Zuo, L. Dai, L. Wang, H. Jia, Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range, Sci. Rep., 5 (2015) 10883.
    [23] J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller‐Mach, G.O. Mueller, Y. Ohno, L.E. Rohwer, J.A. Simmons, Research challenges to ultra‐efficient inorganic solid‐state lighting, Laser Photonics Rev., 1 (2007) 307-333.
    [24] C.J. Humphreys, Solid-state lighting, MRS Bull., 33 (2008) 459-470.
    [25] R. Mueller‐Mach, G.O. Mueller, M.R. Krames, O.B. Shchekin, P.J. Schmidt, H. Bechtel, C.H. Chen, O. Steigelmann, All‐nitride monochromatic amber‐emitting phosphor‐converted light‐emitting diodes, Phys Status Solidi Rapid Res Lett, 3 (2009) 215-217.
    [26] S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Properties of transparent Ce: YAG ceramic phosphors for white LED, Opt. Mater., 33 (2011) 688-691.
    [27] K.H. Lee, S.R. Lee, Process development for yellow phosphor coating on blue light emitting diodes (LEDs) for white light illumination,
    2006 8th Electronics Packaging Technology Conference, IEEE, 2006, pp. 379-384.
    [28] P. Yadav, C. Joshi, S. Moharil, Two phosphor converted white LED with improved CRI, Journal of luminescence, 136 (2013) 1-4.
    [29] U. Kaufmann, M. Kunzer, K. Köhler, H. Obloh, W. Pletschen, P. Schlotter, R. Schmidt, J. Wagner, A. Ellens, W. Rossner, Ultraviolet pumped tricolor phosphor blend white emitting LEDs, Phys Status Solidi Rapid Res Lett, 188 (2001) 143-146.
    [30] 黃佩君, 劉江彬, 邱仁鈿, LED產業之專利佈局分析研究-以大尺吋液晶TV背光源技術為例, 智慧財產研究所, 國立政治大學, 2008.
    [31] 劉偉仁, 姚中業, 黃健豪, 鍾淑茹, 金風, LED螢光粉技術, 五南圖書出版股份有限公司.
    [32] B. Taiwan, 什麼是廣色域, 2018.
    [33] J. Sheats, H. Antoniodis, M. Hueschen, W. Leonard, Millar, Moon, R., Roitman, D. Stocking, A, (1996) 884-888.
    [34] M.S. AlSalhi, J. Alam, L.A. Dass, M. Raja, Recent advances in conjugated polymers for light emitting devices, Int. J. Mol. Sci., 12 (2011) 2036-2054.
    [35] M. Deuûen, H. Bässler, Organic LEDs, Chemie Unserer Zeit, 31 (1997) 76-86.
    [36] T. Omata, Y. Tani, S. Kobayashi, S. Otsuka-Yao-Matsuo, Quantum dot phosphors and their application to inorganic electroluminescence device, Thin Solid Films, 520 (2012) 3829-3834.
    [37] C. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115 (1993) 8706-8715.
    [38] N. Pradhan, B. Katz, S. Efrima, Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents, J. Phys. Chem. B, 107 (2003) 13843-13854.
    [39] M.A. Hines, Guyot-Sionnest, Philippe, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. B, 100 (1996) 468-471.
    [40] H. Uchida, C.J. Curtis, P.V. Kamat, K.M. Jones, A.J. Nozik, Optical properties of gallium arsenide nanocrystals, J. Phys. Chem. B, 96 (1992) 1156-1160.
    [41] A. Guzelian, U. Banin, A. Kadavanich, X. Peng, A. Alivisatos, Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots, Applied physics letters, 69 (1996) 1432-1434.
    [42] S.-W. Kim, J.P. Zimmer, S. Ohnishi, J.B. Tracy, J.V. Frangioni, M.G. Bawendi, Engineering InAs x P1-x/InP/ZnSe III− V Alloyed Core/Shell Quantum Dots for the Near-Infrared, J. Am. Chem. Soc., 127 (2005) 10526-10532.
    [43] D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent, Nano Lett., 2 (2002) 1027-1030.
    [44] E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, S.-W. Kim, Step-wise synthesis of InP/ZnS core− shell quantum dots and the role of zinc acetate, Chem. Mater., 21 (2009) 573-575.
    [45] Y.-H. Kim, Y.-w. Jun, B.-H. Jun, S.-M. Lee, J. Cheon, Sterically induced shape and crystalline phase control of GaP nanocrystals, J. Am. Chem. Soc., 124 (2002) 13656-13657.
    [46] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, The Journal of Physical Chemistry B, 101 (1997) 9463-9475.
    [47] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine− trioctylphosphine oxide− trioctylphospine mixture, Nano Lett., 1 (2001) 207-211.
    [48] P.T. Chin, C. de Mello Donegá, S.S. van Bavel, S.C. Meskers, N.A. Sommerdijk, R.A. Janssen, Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color, J. Am. Chem. Soc., 129 (2007) 14880-14886.
    [49] W. Zhang, G. Chen, J. Wang, B.-C. Ye, X. Zhong, Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots, Inorg. Chem., 48 (2009) 9723-9731.
    [50] 艾格, 比傳統液晶電視色彩更飽和、更省電,三星解說量子點電視的優缺點, 2017.
    [51] J.A. Roy, F.R. Taubner, Fluorescent lamp having double phosphor layer, Google Patents, 1984.
    [52] J.G. Rabatin, R.A. Sieger, X-ray image convertors utilizing lanthanum and gadolinium oxyhalide luminescent materials activated with terbium, Google Patents, 1971.
    [53] N. Matsuda, Y. Tetsuishi, K. Higuchi, White luminescent phosphor for use in cathode ray tube, Google Patents, 1985.
    [54] S. Yamashita, Electroluminescence device having phosphor particles which give donor-acceptor type luminescence, Google Patents, 2007.
    [55] H.A. Höppe, Recent developments in the field of inorganic phosphors, Angew. Chem. Int. Ed., 48 (2009) 3572-3582.
    [56] A.N. Becidyan, Luminescent pigments in security applications, Color. Res. Appl., 20 (1995) 124-130.
    [57] D. Dosev, M. Nichkova, I.M. Kennedy, Inorganic lanthanide nanophosphors in biotechnology, J. Nanosci., 8 (2008) 1052-1067.
    [58] A. Chauhan, A. Gawande, S. Omanwar, Narrow band UVB emitting phosphor LaPO4: Gd3+ for phototherapy lamp, Optik, 127 (2016) 6647-6652.
    [59] B.C. Rowan, L.R. Wilson, B.S. Richards, Advanced material concepts for luminescent solar concentrators, IEEE J. Sel. Top. Quant. Electron., 14 (2008) 1312-1322.
    [60] Y. Zhang, J. Hao, Metal-ion doped luminescent thin films for optoelectronic applications, J. Mater. Chem. C, 1 (2013) 5607-5618.
    [61] E.I. Solomon, R.A. Scott, R.B. King, Computational inorganic and bioinorganic chemistry, John Wiley & Sons2013.
    [62] C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H.J. Seo, Thermal stability of luminescence of NaCaPO4: Eu2+ phosphor for white-light-emitting diodes, J. Phys. D, 42 (2009) 185105.
    [63] Y.-S. Tang, S.-F. Hu, C.C. Lin, N.C. Bagkar, R.-S. Liu, Thermally stable luminescence of K Sr PO 4: Eu 2+ phosphor for white light UV light-emitting diodes, Applied Physics Letters, 90 (2007) 151108.
    [64] Z. Wu, J. Liu, M. Gong, Thermally stable luminescence of SrMg2 (PO4) 2: Eu2+ phosphor for white light NUV light-emitting diodes, Chem. Phys. Lett, 466 (2008) 88-90.
    [65] V. Bachmann, C. Ronda, A. Meijerink, Temperature quenching of yellow Ce3+ luminescence in YAG: Ce, Chemistry of Materials, 21 (2009) 2077-2084.
    [66] N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, Characterization and properties of green-emitting β-SiAlON: Eu 2+ powder phosphors for white light-emitting diodes, Applied Physics Letters, 86 (2005) 211905.
    [67] A. Alexeev, G. Martin, V. Hildenbrand, K.J. Bosschaart, Influence of dome phosphor particle concentration on mid-power LED thermal resistance, 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), IEEE, 2016, pp. 33-43.
    [68] X. Chen, S. Wang, M. Chen, S. Liu, Phosphor settling induced mechanical degradation of silicone/phosphor composite in light emitting diode packages, J. Appl. Polym. Sci., 132 (2015).
    [69] Y. Gu, Q. Zhang, Y. Li, H. Wang, Nitridation from core-shell oxides for tunable luminescence of BaSi 2 O 2 N 2: Eu 2+ LED phosphors, J. Mater. Chem. C, 20 (2010) 6050-6056.
    [70] B. Wu, Q. Zhang, H. Wang, Y. Li, Low-temperature preparation of monodispersed Eu-doped CaTiO 3 LED phosphors with controllable morphologies, CrystEngComm, 14 (2012) 2094-2099.
    [71] T. Han, S. Cao, D. Zhu, C. Zhao, M. Ma, M. Tu, J. Zhang, Effects of annealing temperature on YAG: Ce synthesized by spray-drying method, Optik, 124 (2013) 3539-3541.
    [72] N.T. Tran, J.P. You, F.G. Shi, Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED, J. Light. Technol., 27 (2009) 5145-5150.
    [73] T. Pluym, Q. Powell, A. Gurav, T. Ward, T. Kodas, L. Wang, H. Glicksman, Solid silver particle production by spray pyrolysis, J. Aerosol Sci, 24 (1993) 383-392.
    [74] T.C. Pluym, T.T. Kodas, L.-M. Wang, H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis, J. Mater. Res. Technol., 10 (1995) 1661-1673.
    [75] P.S. Patil, Versatility of chemical spray pyrolysis technique, Mater. Chem. Phys., 59 (1999) 185-198.
    [76] W.N. Wang, W. Widiyastuti, I.W. Lenggoro, T.O. Kim, K. Okuyama, Photoluminescence optimization of luminescent nanocomposites fabricated by spray pyrolysis of a colloid-solution precursor, J. Electrochem. Soc., 154 (2007) J121-J128.
    [77] Y.C. Kang, I.W. Lenggoro, K. Okuyama, S.B. Park, Luminescence characteristics of Y2SiO5 : Tb phosphor particles directly prepared by the spray pyrolysis method, J. Electrochem. Soc., 146 (1999) 1227-1230.
    [78] I.W. Lenggoro, B. Xia, H. Mizushima, K. Okuyama, N. Kijima, Synthesis of LaPO4: Ce, Tb phosphor particles by spray pyrolysis, Mater. Lett., 50 (2001) 92-96.
    [79] H.T. Kim, J.H. Kim, J.-K. Lee, Y.C. Kang, Green light-emitting Lu3Al5O12: Ce phosphor powders prepared by spray pyrolysis, Mater. Res. Bull., 47 (2012) 1428-1431.
    [80] Y.C. Kang, S. BinPark, I.W. Lenggoro, Photoluminescence properties of Ce1-xTbxMgAl11O19 phosphor particles prepared by spray pyrolysis, Jpn. J. Appl. Phys, 38 (1999) 2013.
    [81] C. Sadek, L. Pauchard, P. Schuck, Y. Fallourd, N. Pradeau, C. Le Floch-Fouéré, R. Jeantet, Mechanical properties of milk protein skin layers after drying: Understanding the mechanisms of particle formation from whey protein isolate and native phosphocaseinate, Food Hydrocoll., 48 (2015) 8-16.
    [82] P. Thybo, L. Hovgaard, J.S. Lindeløv, A. Brask, S.K. Andersen, Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion, Pharm. Res., 25 (2008) 1610-1620.
    [83] C. Arpagaus, A. Collenberg, D. Rütti, Laboratory spray drying of materials for batteries, lasers, and bioceramics, Dry. Technol., 37 (2019) 426-434.
    [84] J.S. Cho, S.M. Lee, K.Y. Jung, Y.C. Kang, Large-scale production of fine-sized Zn 2 SiO 4: Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process, Mater. Res. Bull., 4 (2014) 43606-43611.
    [85] H. Feng, Y. Yang, X. Zhang, Y. Xu, J. Guan, Synthesis and luminescence of Sr2SiO4: Eu3+ micro-spherical phosphors by a spray-drying process, Superlattices Microstruct., 78 (2015) 150-155.
    [86] H.-M. Lee, C.-C. Cheng, C.-Y. Huang, The synthesis and optical property of solid-state-prepared YAG: Ce phosphor by a spray-drying method, Mater. Res. Bull., 44 (2009) 1081-1085.
    [87] O. Wilhelm, S.E. Pratsinis, E. De Chambrier, M. Crouzet, I. Exnar, Electrochemical performance of granulated titania nanoparticles, J. Power Sources, 134 (2004) 197-201.
    [88] S. Deng, Y.J.A.j. Lin, Granulation of sol‐gel‐derived nanostructured alumina, AIChE j, 43 (1997) 505-514.
    [89] X. He, J. Li, H. Cheng, C. Jiang, C. Wan, Controlled crystallization and granulation of nano-scale β-Ni (OH) 2 cathode materials for high power Ni-MH batteries, J. Power Sources, 152 (2005) 285-290.
    [90] J.S. Cho, K.Y. Jung, M.Y. Son, Y.C. Kang, Large-scale production of spherical Y 2 O 3: Eu 3+ phosphor powders with narrow size distribution using a two-step spray drying method, Mater. Res. Bull., 4 (2014) 62965-62970.
    [91] L. Zhang, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, D. Shen, Q. Zhang, Systematic optimization of spray drying for YAG transparent ceramics, J. Eur. Ceram. Soc., 35 (2015) 2391-2401.
    [92] E. Lintingre, F. Lequeux, L. Talini, N. Tsapis, Control of particle morphology in the spray drying of colloidal suspensions, Soft Matter, 12 (2016) 7435-7444.
    [93] J.S. Cho, K.Y. Jung, Y.C. Kang, Two-step spray-drying synthesis of dense and highly luminescent YAG: Ce 3+ phosphor powders with spherical shape, RSC Adv., 5 (2015) 8345-8350.
    [94] D.-J. Kim, J.-Y. Jung, Granule performance of zirconia/alumina composite powders spray-dried using polyvinyl pyrrolidone binder, J. Eur. Ceram. Soc., 27 (2007) 3177-3182.
    [95] L. Zhang, Y. Li, X. Li, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, D. Tang, Characterization of spray granulated Nd: YAG particles for transparent ceramics, J. Alloys Compd, 639 (2015) 244-251.
    [96] W.J. Jr Walker, J.S. Reed, S.K. Verma, Influence of slurry parameters on the characteristics of spray‐dried granules, J. Am. Ceram. Soc., 82 (1999) 1711-1719.
    [97] M.v. Laue, Zwei Einwände gegen die Relativitätstheorie und ihre Widerlegung, Phys. Z., 13 (1912) 118-120.
    [98] R. Pelberg, Concepts in Radiation and Radiation Safety, Cardiac CT Angiography Manual, Springer2015, pp. 1-17.
    [99] J.K. Cockcroft, X-ray Filters, 2006.
    [100] M. Ritter, A landmark-based method for the geometrical 3D calibration of scanning microscopes, (2007).
    [101] L. Rossi, Mônica, SEM root, 2012.
    [102] S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology, J Micromech Microeng, 11 (2001) 287.
    [103] J. Orloff, M. Utlaut, L. Swanson, A. Wagner, High resolution focused ion beams: FIB and its applications, Phys Today, 57 (2004) 54-55.
    [104] L.A. Giannuzzi, Introduction to focused ion beams: instrumentation, theory, techniques and practice, Springer Science & Business Media2004.
    [105] J. Koch, K. Grun, M. Ruff, R. Wernhardt, A. Wieck, Creation of nanoelectronic devices by focussed ion beam implantation, IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 99CH37029), IEEE, 1999, pp. 35-39.
    [106] C.A. Volkert, A.M. Minor, Focused ion beam microscopy and micromachining, MRS Bull., 32 (2007) 389-399.
    [107] S.-S. Liu, Z. Jiao, N. Shikazono, S. Matsumura, M. Koyama, Observation of the Ni/YSZ Interface in a Conventional SOFC, J. Electrochem. Soc., 162 (2015) F750-F754.
    [108] K. Dreier, What are Fluorescence and Phosphorescence?, 2017.
    [109] T.I. Spiridonova, S.I. Tverdokhlebov, Y.G. Anissimov, Investigation of the Size Distribution for Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries, J Pharm Sci, 108 (2019) 2690-2697.
    [110] H. Abdi, Coefficient of variation, Encyclopedia of research design, 1 (2010) 169-171.
    [111] E. Dolekcekic, M.J. Pomeroy, S. Hampshire, B-Phase solid solutions in Er-and Y-SiAlON glass–ceramics, J. Mater. Sci., 50 (2015) 299-312.
    [112] J. Wan, Z. Wang, X. Chen, L. Mu, Y. Qian, Shape-tailored photoluminescent intensity of red phosphor Y2O3: Eu3+, J. Cryst. Growth, 284 (2005) 538-543.
    [113] K.Y. Jung, K.H. Han, Densification and photoluminescence improvement of Y 2 O 3 phosphor particles prepared by spray pyrolysis, J Solid State Electrochem, 8 (2005) H17-H20.
    [114] M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Aggregate morphology evolution by sintering: Number and diameter of primary particles, J. Aerosol Sci, 46 (2012) 7-19.
    [115] M.N. Rahaman, Ceramic processing and sintering, CRC press2003.
    [116] D. Nishiura, A. Shimosaka, Y. Shirakawa, J. Hidaka, Simulation of drying of particulate suspensions in spray-drying granulation process, J. Chem. Eng. Japan, 43 (2010) 641-649.
    [117] S. Miyazaki, D. Nishiura, A. Shimosaka, Y. Shirakawa, J. Hidaka, Revealing the formation mechanism of granules by drying simulation of slurry droplet, Adv Powder Technol, 22 (2011) 93-101.
    [118] C. Lu, J. Fan, P. Zhao, F. Yuan, Preparation of hollow silica spheres by DC thermal plasma, Powder Technol, 266 (2014) 210-217.
    [119] F. Yu, J. Zhang, Y. Yang, G.J.J.o.P.S. Song, Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol–gel-spray drying method, J. Power Sources, 195 (2010) 6873-6878.
    [120] H. Minoshima, K. Matsushima, H. Liang, K. Shinohara, Estimation of diameter of granule prepared by spray drying of slurry with fast and easy evaporation, J. Chem. Eng. Japan, 35 (2002) 880-885.
    [121] H. Minoshima, K. Matsushima, H. Liang, K. Shinohara, Basic model of spray drying granulation, J. Chem. Eng. Japan, 34 (2001) 472-478.
    [122] Y. Wang, H. Zheng, R. Hu, X.J.J.o.S.S.L. Luo, Modeling on phosphor sedimentation phenomenon during curing process of high power LED packaging, 1 (2014) 2.

    QR CODE