簡易檢索 / 詳目顯示

研究生: 丁俊壬
Gin-Zen Ting
論文名稱: 熱管技術於電腦產業應用之發展趨勢
Heat Pipe Technology Development Trend for Computers Products
指導教授: 劉顯仲
John S. Liu
施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 46
中文關鍵詞: 熱管散熱主路徑分析技術軌跡專利分析
外文關鍵詞: heat pipe, thermal, main path analysis, technological trajectory, patent analysis
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱管於電腦產業中主要用於散熱。電子元件因為電阻與能量耗損的作用,會持續發熱,而電腦中的電子元件隨著技術發展越來越小型化,隨之而來的散熱需求也日益增加,因而開始大量使用原本應用於太空梭、飛機與飛彈等之熱管技術。現今熱管在電腦產業使用已經極為廣泛,通常會搭配散熱鰭片與風扇組合成散熱模組,裝置於桌上型電腦、筆記型電腦、顯示卡等設備中,並會依用途與機械結構需求之不同而有不同的設計方式。英特爾公司於1993年申請之05339214專利首先結合熱管散熱模組進行電腦散熱,解決了小型化電子元件因為提高運算速度而與日俱增的發熱問題,並奠定往後的電腦散熱設計的基礎。本研究以熱管專利作為研究的標的,以科學方法探討熱管領域之發展過程。
    本研究透過WEBPAT專利資料庫搜集熱管領域從1976至2018年的美國專利共4596筆,再運用主路徑分析觀察熱管領域之專利技術發展軌跡。本研究發現,熱管最初使用於航太相關的電子元件,之後由電子元件製造商英特爾公司發表對中央處理器為主的熱管之電腦散熱方式,繼而廣泛的應用於電腦中的伺服器、個人桌上型電腦與筆記型電腦之中,並由電腦代工廠大量延伸相關技術。本研究可供電腦設備相關廠商深入瞭解各國關於熱管專利的發展主軸以及技術類型與發展方向,作為熱管專利規劃佈局之參考。


    Heat pipes are mainly used for heat dissipation in the computer industry. Electronic components will continue to generate heat due to resistance and energy consumption. With the development of technology, electronic components in computers are becoming more and more miniaturized, and the demand for heat dissipation is also increasing. Therefore, they have begun to be used in space shuttles. , Airplanes and missiles, etc. heat pipe technology. Heat pipes are widely used in the computer industry. They are usually combined with heat dissipation fins and fans to form a heat dissipation module, which is installed in desktop computers, notebook computers, graphics cards, etc., and will vary according to the use and mechanical structure requirements. Way of design. The 05339214 patent filed by Intel Corporation in 1993 first combines heat pipes with heat dissipation modules to dissipate computer heat, which solves the problem of increasing heat generation due to miniaturization of electronic components and increased computing speed, and lays the foundation for future computer heat dissipation designs. . This research takes the patent of heat dissipation technology "heat pipe", which is indispensable for computer industry applications, as the subject of the research. Exploring the development process in the field of heat pipes with scientific methods.
    This research uses WEBPAT to collect 4,596 US patents related to the heat pipe field from 1976 to 2018, and then uses main path analysis to observe the development trajectory and process of patented technology in the heat pipe field. This study found that the heat pipe in the main path was originally used For aerospace-related electronic components, the electronic component manufacturer Intel later published a computer heat dissipation method for the CPU-based heat pipe, which was then widely used in computer servers, personal desktop computers, and notebook computers. Among them, computer foundries continue to develop a large number of related heat pipe patents. And from the main path to explore the development axis of each country's patents, and analyze the layout of heat pipe patents based on the types and development directions of the companies in each country.

    摘 要 I Abstract II 誌 謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻探討 4 2.1 熱管技術與電腦產業文獻 4 2.2 主路徑分析文獻 4 第三章 研究方法 7 3.1 研究資料 7 3.2 主路徑分析 7 第四章 研究結果與分析 11 4.1 專利與專利權人基本統計 11 4.1.1專利成長趨勢 11 4.1.2專利之國家別分析 14 4.1.3專利權人分析 16 4.2 熱管於電腦製造產業之應用專利主路徑分析 20 4.2.1逐步主路徑 20 4.2.2關鍵延伸主路徑 31 第五章 結論與建議 32 5.1 研究結論 32 5.2 管理意涵 33 5.3 研究建議 34 參考文獻 35

    Barbieri, N., Ghisetti, C., Gilli, M., Marin, G., & Nicolli, F. (2016). A survey of the literature on environmental innovation based on main path analysis. Journal of Economic Surveys, 30(3), 596-623.
    Batagelj, V., & Mrvar, A. (1998). Pajek-program for large network analysis. Connections, 21(2), 47-57.
    Bhupatiraju, S., Nomaler, Ö., Triulzi, G., & Verspagen, B. (2012). Knowledge flows–Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Research policy, 41(7), 1205-1218.
    Calero-Medina, C., & Noyons, E. C. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics, 2(4), 272-279.
    Carley, K. M., Hummon, N. P., & Harty, M. (1993). Scientific influence: An analysis of the main path structure in the Journal of Conflict Resolution. Knowledge, 14(4), 417-447.
    Chen, Y.-B., Liu, J. S., & Lin, P. (2013). Recent trend in graphene for optoelectronics. Journal of nanoparticle research, 15(2), 1454.
    Chernysheva, M., Yushakova, S., & Maydanik, Y. F. (2014). Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers. Energy, 69, 534-542.
    Chi, S. (1976). Heat pipe theory and practice. Washington, DC, Hemisphere Publishing Corp.; New York, McGraw-Hill Book Co., 1976. 256 p.
    Cho, Y., Park, S., Jo, S. J., & Suh, S. (2013). The landscape of educational technology viewed from the ETR & D journal. British Journal of Educational Technology, 44(5), 677-694.
    Faghri, A. (1995). Heat pipe science and technology: Global Digital Press.
    Faghri, A. (2012). Review and advances in heat pipe science and technology. Journal of heat transfer, 134(12), 123001.
    Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311-336.
    Gao, X., & Guan, J. (2012). Network model of knowledge diffusion. Scientometrics, 90(3), 749-762.
    Harris, J. K., Luke, D. A., Zuckerman, R. B., & Shelton, S. C. (2009). Forty years of secondhand smoke research: the gap between discovery and delivery. American journal of preventive medicine, 36(6), 538-548.
    Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63.
    Hummon, N. P., Doreian, P., & Freeman, L. C. (1990). Analyzing the structure of the centrality-productivity literature created between 1948 and 1979. Knowledge, 11(4), 459-480.
    Jo, S. J., Jeung, C. W., Park, S., & Yoon, H. J. (2009). Who is citing whom: Citation network analysis among HRD publications from 1990 to 2007. Human Resource Development Quarterly, 20(4), 503-537.
    Liang, H., Wang, J.-J., Xue, Y., & Cui, X. (2016). IT outsourcing research from 1992 to 2013: A literature review based on main path analysis. Information & Management, 53(2), 227-251.
    Liu, J. S., Lu, L. Y., & Ho, M. H.-C. (2019). A few notes on main path analysis. Scientometrics, 119(1), 379-391.
    Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013a). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3-15.
    Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013b). A survey of DEA applications. Omega, 41(5), 893-902.
    Lu, L. Y., Lin, B. J., Liu, J. S., & Yu, C.-Y. (2012). Ethics in nanotechnology: What’s being done? What’s missing? Journal of business ethics, 109(4), 583-598.
    Lu, L. Y., & Liu, J. S. (2013). An innovative approach to identify the knowledge diffusion path: the case of resource-based theory. Scientometrics, 94(1), 225-246.
    Lu, L. Y., & Liu, J. S. (2014). The knowledge diffusion paths of corporate social responsibility–from 1970 to 2011. Corporate Social Responsibility and Environmental Management, 21(2), 113-128.
    Lucio‐Arias, D., & Leydesdorff, L. (2008). Main‐path analysis and path‐dependent transitions in HistCite™‐based historiograms. Journal of the American Society for Information Science and Technology, 59(12), 1948-1962.
    Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research policy, 36(5), 789-806.
    Noie-Baghban, S. H., & Majideian, G. (2000). Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals. Applied thermal engineering, 20(14), 1271-1282.
    Ravikumar, M., Palaniappan, V., & Sabareesh, M. METHODS FOR IMPROVING PERFORMANCE OF HEAT TRANSFER IN PIPES–A REVIEW.
    Reay, D., McGlen, R., & Kew, P. (2013). Heat pipes: theory, design and applications: Butterworth-Heinemann.
    Shah, B. (2016). Recent trends in heat pipe applications: a review. International Journal of Science, Engineering and Technology Research (IJSETR), 5(7), 2508-2510.
    Tampubolon, G., & Ramlogan, R. (2007). Networks and temporality in the development of a radical medical treatment. Graduate Journal of Social Science, 4(1), 54-77.
    Toffler, A., & Alvin, T. (1980). The third wave (Vol. 484): Bantam books New York.
    Vasiliev, L. (2008). Micro and miniature heat pipes–Electronic component coolers. Applied thermal engineering, 28(4), 266-273.
    Verspagen, B. (2006). University research, intellectual property rights and European innovation systems. Journal of Economic Surveys, 20(4), 607-632.

    無法下載圖示 全文公開日期 2026/07/28 (校內網路)
    全文公開日期 2026/07/28 (校外網路)
    全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE