簡易檢索 / 詳目顯示

研究生: 邱騰億
Teng-I Chiu
論文名稱: 鋼筋混凝土低矮剪力牆之等效勁度
Effective Stiffness of Reinforced Concrete Squat Walls
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
李宏仁
Hung-Jen Lee
陳沛清
Pei-Ching Chen
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 低矮剪力牆等效勁度撓曲剪力應變穿透界面滑移
外文關鍵詞: Squat shear wall, effective stiffness, flexural, shear, strain penetration, sliding
相關次數: 點閱:183下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於分析鋼筋混凝土結構時,考慮混凝土之開裂與部分鋼筋可能降伏,構件的等效勁度(Effective Stiffness)是線彈性分析時力量分布的主要依據,然而過去文獻對於低矮剪力牆的等效勁度討論十分有限,通常低矮剪力牆定義為高長比小於2.0者。

    本研究蒐集21座低矮剪力牆試體測試結果,所有試體測試方式皆在無軸力下承受側向反復載重,且試體外部變形一致藉由光學儀器量測,本研究分析量測數據,將試體總變形量分為撓曲變形(Flexural Deformation)、剪力變形(Shear Deformation)、應變穿透或稱鋼筋滑移變形(Strain Penetration or Slip Deformation)、以及界面滑移變形(Sliding Deformation),有系統地從事低矮剪力牆等效勁度分析,旨在探討可能影響低矮剪力牆等效勁度的可能因素,進而提出相關建議,建立評估模型。

    研究顯示ACI 318-14與ASCE 41-17規範建議之等效剛度高估無軸力低矮剪力牆之等效撓曲與剪力剛度。撓曲剛度比(實驗值除以預測值,〖"EI" 〗_"test" /"E" _"c" "I" _"g" )隨試體高長比增加而增加,建議於高長比0.5到1.5的區間內,撓曲剛度應可由0.20〖"EI" 〗_"m,b" 至0.35〖"EI" 〗_"m,b" 間作線性內插求得;剪力剛度比(〖"GA" 〗_"test" /"G" _"c" "A" _"g" )則隨垂直鋼筋量增加而增加,本研究建議於 "0.25%"≤"ρ" _"v,66%" ≤"1.75%" 的區間內,剪力剛度應可由 "0.1" "G" _"c" "A" _"g" 至 "0.25" "G" _"c" "A" _"g" 間作內插求得;於評估應變穿透變形時,平均握裹應力建議使用5√("f" _"c" "' (psi)" ) 作為評估之依據 ;界面滑移剛度似乎也與垂直鋼筋量有關,建議以 "0.25" "E" _"s" "A" _"s,75%" 作為界面滑移剛度值。


    Force distribution in linear-elastic structural analysis is determined primarily based on the member effective stiffness which considers the effects of concrete cracking and slightly yielding of some longitudinal reinforcement. However, researches on effective stiffness of reinforced concrete (RC) squat walls, typically defined as its height to length ratio less than 2.0, appear to be very limited.

    The effective stiffness of RC squat walls is systematically investigated in this research through analyses of test results collected from previous studies in this lab. A total of 21 RC squat shear wall specimens were collected. All specimens were subjected to lateral displacement reversals without axial load. Also, exterior deformation of all test specimens was consistently measured by the optical tracking system. This research separates the total deformation into four components, flexural deformation, shear deformation, strain penetration or slip deformation, and sliding deformation. Based on analytical results, design parameters that influence the effective stiffness of each deformation component are first identified. The effective stiffness model for each deformation component is then proposed.

    Test results indicate the suggested rigidity per ACI 318-14 and ASCE 41-17 significantly overestimates the flexural and shear rigidity of RC squat walls without axial load. Flexural rigidity ratio (test result divided by the estimated value,〖"EI" 〗_"test" /"E" _"c" "I" _"g" ) appears to increases as the wall aspect ratio increases. It is suggested to determine flexural rigidity by a linear interpolation form 0.20〖"EI" 〗_"m,b" to 0.35〖"EI" 〗_"m,b" as the wall aspect ratio changes from 0.5 to 1.5. Shear rigidity ratio (〖"GA" 〗_"test" /"G" _"c" "A" _"g" ) appears to increase as the amount of vertical reinforcement increases. It is suggested to determine shear rigidity by a linear interpolation form "0.1" "G" _"c" "A" _"g" to "0.25" "G" _"c" "A" _"g" for walls with vertical reinforcement ratio in the following range: "0.25%"≤"ρ" _"v,66%" ≤"1.75%" . Strain penetration is found to be greatly affected by the average bond stress of the reinforcing bars. The average bond stress 5√("f" _"c" "' (psi)" ) is suggested for estimating strain penetration . Sliding rigidity also appears to be influenced by the amount of vertical reinforcement. It is suggested to use "0.25" "E" _"s" "A" _"s,75%" estimate the sliding rigidity.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 4 1.3 研究內容架構 4 第二章 文獻回顧 5 2.1 ACI 318-14 5 2.2 ASCE 41-17 6 2.3 Li與Xiang (2011) 7 2.4 Kim與Mander (2007) 10 第三章 剪力牆試驗介紹與結果 14 3.1 試體斷面配置 14 3.1.1 Cheng等學者 (2016) 14 3.1.2 Wibowo (2017) 15 3.1.3 周延 (2018) 18 3.1.4 其他試體 19 3.2 試驗配置與試驗過程 20 3.3 試驗結果 21 3.3.1 材料性質 21 3.3.2 試體測試結果 22 3.3.2.1 遲滯迴圈與包絡線 22 第四章 變形量與勁度分析 31 4.1變形量定義 31 4.2 力量-變形分量曲線 37 4.3 等效勁度定義 43 4.3.1撓曲剛度 43 4.3.2剪力剛度 49 4.3.3 應變穿透剛度 55 4.3.4 界面滑移剛度 60 4.4 結果討論 63 4.4.1 本研究預測位移量 63 4.4.2 比較過去文獻 63 4.4.2.1 Kim與Mander (2007) 63 4.4.2.2 Li與Xiang (2011) 64 第五章 結論與建議 65 5.1 結論 65 5.2 建議 66 符號說明 67 參考文獻 71 附錄A 試體等效勁度表 73 A.1各試體之等效勁度值 73 附錄B 應變計於V60對應之應變讀數 74

    ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary,” American Concrete Institute, Farmington Hills, Michigan, 519 pp.
    ASCE/SEI 41, 2017, "American Society of Civil Engineers, Seismic Evaluation and Retrofit of Existing Buildings," American Society of Civil Engineers, Reston, Virginia, U.S.A.
    Cheng, M.–Y.; Hung, S.–C.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V. 113, No.5, Sep.- Oct., pp. 1065-1076.
    Collins, M. P.; and Mitchell, D., 1991, “Prestressed Concrete Structures,” Prentice Hall, Englewood Cliffs, 766 pp.
    Kim, J. H.; and Mander, J., 2007, “Influence of Transverse Reinforcement on Elastic Shear Stiffness of Cracked Concrete Elements,” Eng. Struct., 29(8), pp. 1798-1807.
    Li, B.; and Xiang, W., 2011, “Effective Stiffness of Squat Structural Walls.” Eng. Struct., 137(12), pp. 1470-1479.
    Lehman, D. E.; and Moehle, J. P., 2000, “Seismic Performance of Well Confined Concrete Bridge Columns,” PEER 1998/01, Pacific Earthquake Engineering Research Center, Berkeley, CA.
    Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011, “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No. 6, National Institute of Standards and Technology, U.S. Department of Commerce, NIST GCR 11-917-11, 37 pp.
    Moehle, J. P., 2014, “Design of Reinforced Concrete Buildings,” McGraw-Hill, pp. 778.
    Thorenfeldt, E.; Tomaszewicz, A.; and Jensen, J. J., 1987, “Mechanical Properties of High Strength Concrete and Application to Design. Proceedings of the Symposium: Utilization of High-Strength Concrete,” Stavanger, Norway, June Tapir, Trondheim, pp. 149–159.
    Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation, Department of Civil and Construction Engineering, University of Science and Technology, Taipei, Taiwan
    廖文正、林致淳、詹穎雯,2016,「台灣混凝土彈性模數建議公式研究」,結構工程期刊,31(3),第5-31頁。
    周延,2018,「不同形式之特殊邊界構材於低矮剪力牆往復載重行為研究」,碩士論文,國立台灣科技大學營建工程系,台北。

    QR CODE