簡易檢索 / 詳目顯示

研究生: 翁晟庭
Cheng-Ting Wong
論文名稱: 分析與製備摻雜氧化石墨烯之生物活性玻璃/膠原蛋白複合支架
Characterization and preparation of grapheme oxide-doped bioactive glass/collagen composite scaffolds
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Cheng-Hao Wang
游進陽
Chin-Yang Yu
周育任
Yu-Ren Jhou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 134
中文關鍵詞: 生物活性玻璃氧化石墨烯膠原蛋白複合支架抗菌性
外文關鍵詞: bioactive glass, graphene oxide, collagen, composite scaffold, antibacterial property
相關次數: 點閱:269下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨折是指骨骼的連續性有部分或全部斷裂的醫學狀況。其中,開放性骨折因為骨折部位接觸體外,會接觸到皮膚上和環境中的細菌,因此在治療開放性骨折時,骨移植物的抗菌性很重要。儘管同種異體移植物和自體移植物已用於臨床治療,但可獲得的數量有限,而且額外的侵入性外科手術可能會導致感染。為了盡量減少這些風險,有必要開發可以替代同種異體移植物和自體移植物,並具有抗菌性的支架。
    本研究開發一種複合支架,此複合支架含有三種成分: 膠原蛋白、生物活性玻璃(bioactive glass, BG)和氧化石墨烯(grapheme oxide, GO)。
    膠原蛋白能增加凝血作用,有助於術後止血及修復,但缺點是機械強度不足。BG 具有優異的生物活性和骨結合能力,是作為骨植入物的重要生物材料,而且加入BG還能提高膠原蛋白複合支架的機械強度,但是 BG 缺乏抗菌性。GO 具有良好的抗菌性、機械強度和骨再生性,加入 GO 能增強 BG/膠原蛋白複合支架的抗菌性。本研究將使用混合和摻雜兩種方式將 GO 添加到 BG/膠原蛋白複合支架中,使 BG/膠原蛋白複合支架不僅具有良好的生物相容性,也具有抗菌和骨再生特性。
    本研究採用冷凍乾燥法製備複合支架,與溶劑澆鑄法和靜電紡絲合成法相比具有無毒、簡單、孔徑可控等優點。 BG/膠原蛋白、GO/BG/膠原蛋白和 GO-doped BG/膠原蛋白複合支架的相組成、微觀結構、孔隙率、機械性能,分別使用 X-ray 繞射、掃描電子顯微鏡、壓汞測孔儀和萬能試驗機進行檢測。此外,按照 Kokubo 的方法檢測體外生物活性,使用 ISO10993-5 之濃度標準進行細胞存活率分析(MTTassay),使用大腸桿菌(Escherichia coli, E.coli)利用菌落計數法進行抗菌性測試。最後結果顯示,在 BG 中,以混合的方式添加少量 GO,可以增加生物活性玻璃/膠原蛋白複合支架的機械強度,由 3.12MPa增加至 3.94MPa,但抗菌性提升有限,由 6.68%提升至 73.28%﹔以摻雜的方式添加少量 GO,可以增加 BG/膠原蛋白複合支架的抗菌性,由 6.68%提升至 98.62%,但機械強度沒有顯著提升,由 3.12MPa 降至 2.38MPa。


    Open-fracture is a medical condition caused by a partial or total
    break in the continuity of a bone. This condition can expose the bacteria
    that can develop the risk of infection. To treat these defects, the scaffold
    needs to be implanted to fill the defect to promote new bone formation
    and at the same time should be able to kill clinically present bacteria.
    Hence, the development of an osteogenesis-inducing and clinical
    bacteria-killing scaffold is required. Natural polymers are suitable
    candidates for developing such scaffolds because they can be
    manufactured with active agents that promote bone regeneration and
    prevent bacterial infection simultaneously. Collagen is biocompatible
    natural polymer with important biofunctions such as biodegradability and
    antimicrobial activity. However, collagen has a low mechanical strength,
    which restrict its wider application. To overcome this limitation, the
    incorporation with different biomaterials such as bioactive glass (BG) and
    graphene oxide (GO) could offers additional properties. BG is an
    important biomaterial for bone implants due to its excellent bioactivity
    and osseointegration ability. In addition, the addition of BG can also
    improve the mechanical strength of the collagen composite scaffold.
    While GO possess excellent antibacterial properties.
    In this study, preparation method of freeze-drying was used with the
    advantages of non-toxicity, simplicity, and controllable pore size over
    solvent casting and electrospinning synthesis. The phase compositions,
    microstructures, porosities, mechanical properties of BG/collagen,
    GO/BG/collagen, and GO-doped BG/collagen composite scaffolds were
    characterized using X-Ray diffraction, scanning electron microscopy,
    mercury porosimeter and universal testing, respectively. In addition, in
    vitro bioactivity was examined following Kokubo’s protocol while the
    cell viability was evaluated using MTT assay. Finally, the results indicate
    that the addition of GO into BG/collagen composite scaffolds enhance
    bioactivity antibacterial property, and cell viability and corresponded
    mechanism were discussed.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 骨折 5 2.1.1 骨折的分類 5 2.1.2 骨折的成因 5 2.1.3 骨折的癒合過程 6 2.2 生物活性玻璃 7 2.2.1 生物活性玻璃的骨結合與骨誘導機制 7 2.2.2 HCA層在生物活性玻璃上的形成機制 8 2.2.3 生物活性玻璃的離子溶解產物和成骨行為 9 2.3 石墨烯 10 2.3.1 氧化石墨烯 11 2.3.2 氧化石墨烯的優點 12 2.3.3 氧化石墨烯的抗菌機制 13 2.4 膠原蛋白支架 14 2.4.1 具有生物活性玻璃成分的膠原蛋白複合支架 14 2.4.2具有氧化石墨烯成分的膠原蛋白複合支架 15 第三章 實驗方法與目的 17 3.1 實驗設計與樣品製備 17 3.2 實驗藥品 22 3.3 實驗儀器設備 23 3.4 樣品性質之分析方法 24 3.4.1 X光繞射分析儀 24 3.4.2掃描式電子束顯微鏡 25 3.4.3 壓汞測孔儀 26 3.4.4 萬能試驗機 27 3.4.5 體外生物降解行為 28 3.4.6 體外生物活性測試 29 3.5.7體外生物相容性評估 30 3.5.8 抗菌測試 31 第四章 實驗結果 33 4.1 粉末性質分析 34 4.1.1 晶相分析 34 4.1.2 粉末形貌及粒徑分析 35 4.1.3 58s BG粉末之體外細胞活性評估 37 4.2 GO/BG/collagen之複合支架分析 39 4.2.1 晶相分析 39 4.2.2 巨觀形貌 41 4.2.3 微結構分析 42 4.2.4 孔洞分析 44 4.2.5 壓縮試驗 47 4.2.6 體外生物活性測試 49 4.2.7體外生物降解行為 51 4.2.8體外生物相容性評估 53 4.2.9 抗菌測試 55 4.3 GO-BG/collagen之複合支架分析 57 4.3.1 晶相分析 57 4.3.2 巨觀形貌 58 4.3.3 微結構分析 59 4.3.4 孔洞分析 61 4.3.5 壓縮試驗 63 4.3.6 體外生物活性測試 65 4.3.7體外生物降解行為 67 4.3.8體外生物相容性評估 69 4.3.9 抗菌測試 71 第五章 結果討論 73 5.1 GO/BG/膠原蛋白複合支架之性質探討 73 5.1.1 GO/BG/膠原蛋白複合支架之GO含量對孔隙度與孔洞分布探討 73 5.1.2 GO/BG/膠原蛋白複合支架之GO含量對抗壓強度探討 75 5.1.3 GO/BG/膠原蛋白複合支架之GO含量對生物活性探討 77 5.1.4 GO/BG/膠原蛋白複合支架之GO含量對降解行為探討 78 5.1.5 GO/BG/膠原蛋白複合支架之GO含量對細胞存活率為探討 79 5.1.6 GO/BG/膠原蛋白複合支架之GO含量對抗菌率為探討 80 5.2 GO-doped BG/膠原蛋白複合支架之性質探討 81 5.2.1 GO-doped BG/膠原蛋白複合支架之GO含量對孔隙度與孔洞分布探討81 5.2.2 GO-doped BG/膠原蛋白複合支架之GO含量對抗壓強度探討 83 5.2.3 GO-doped BG/膠原蛋白複合支架之GO含量對生物活性探討 85 5.2.4 GO-doped BG/膠原蛋白複合支架之GO含量對降解行為探討 86 5.2.5 GO-doped BG/膠原蛋白複合支架之GO含量對細胞存活率為探討 87 5.2.6 GO-doped BG/膠原蛋白複合支架之GO含量對抗菌率為探討 88 5.3 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之性質探討 89 5.3.1 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之GO含量對孔隙度與抗壓強度探討 89 5.3.2 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之GO含量對孔隙度與生物活性探討 94 5.3.3 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之GO含量對生物活性與降解行為探討 97 5.3.4 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之GO含量對細胞存活率探討 99 5.3.5 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架之GO含量對抗菌率探討 101 5.4 綜合評估 103 5.4.1 GO/BG/膠原蛋白複合支架綜合評估 103 5.4.2 GO-doped BG/膠原蛋白複合支架綜合評估 106 5.4.3 GO/BG/膠原蛋白複合支架和GO-doped BG/膠原蛋白複合支架綜合評估108 第六章 結論 110 第七章 未來工作 113 參考文獻 114

    [1]中華民國衛福部110年國人死因統計結果, 衛生福利部, (2022)。
    [2]丁先玲(民81)。交通意外傷害之流行病學研究。感染控制雜誌,8(10),115-121。
    [3] Gustilo, Ramon B., Rex M. Mendoza, and David N. Williams. "Problems in the management of type III (severe) open fractures: a new classification of type III open fractures." The Journal of trauma 24.8 (1984): 742-746.
    [4] Adler, Adam, et al. "In-Hospital Mortality Following Open and Closed Long Bone Fracture: A Comparative Study." Surgical Technology International 26 (2015): 337-342.
    [5] Cheng, Xuelian, et al. "Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage." RSC advances 3.7 (2013): 2296-2305.
    [6] Shih, Shao-Ju, et al. "Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass." Advanced Powder Technology 27.3 (2016): 1013-1020.
    [7] https://kb.commonhealth.com.tw/library/488.html#data-3-collapse
    [8] Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551-555.
    [9] Jones, J. R. (2013). Review of bioactive glass: from Hench to hybrids. Acta biomaterialia, 9(1), 4457-4486.
    [10] Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of biomedical materials research, 5(6), 117-141.
    [11] Sanders, D. M., & Hench, L. L. (1973). Mechanisms of glass corrosion. Journal of the American Ceramic Society, 56(7), 373-377.
    [12] Clark Jr, A. E., Pantano Jr, C. G., & Hench, L. L. (1976). Auger spectroscopic analysis of bioglass corrosion films. Journal of the American Ceramic Society, 59(1‐2), 37-39.
    [13] Hench, L. L. (1991). Bioceramics: from concept to clinic. Journal of the american ceramic society, 74(7), 1487-1510.
    [14] Wilson, J., & Low, S. B. (1992). Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. Journal of Applied Biomaterials, 3(2), 123-129.
    [15] Gough, J. E., Jones, J. R., & Hench, L. L. (2004). Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 25(11), 2039-2046.
    [16] Effah Kaufmann, E. A. B., Ducheyne, P., & Shapiro, I. M. (2000). Evaluation of osteoblast response to porous bioactive glass (45S5) substrates by RT-PCR analysis. Tissue engineering, 6(1), 19-28.
    [17] Bosetti, M., & Cannas, M. (2005). The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials, 26(18), 3873-3879.
    [18] Jones, J. R., Tsigkou, O., Coates, E. E., Stevens, M. M., Polak, J. M., & Hench, L. L. (2007). Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials, 28(9), 1653-1663.
    [19] Silver, I. A., Deas, J., & Erecińska, M. (2001). Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 22(2), 175-185.
    [20] Xynos, I. D., Edgar, A. J., Buttery, L. D., Hench, L. L., & Polak, J. M. (2000). Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochemical and biophysical research communications, 276(2), 461-465.
    [21] Xynos, I. D., Hukkanen, M. V. J., Batten, J. J., Buttery, L. D., Hench, L. L., & Polak, J. M. (2000). Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcified tissue international, 67(4), 321-329.
    [22] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    [23] 刘开辉 等,《石墨烯的结构与基本性质》,华东理工大学出版社,2020.10
    [24] MIT科技評論Technology Review(無日期)。石墨烯產業化現狀、關鍵製備技術突破與商業應用展望|深度解讀。民111年11月24日,取自:https://www.mittrchina.com/news/detail/5771
    [25] Sanchez, V. C., Jachak, A., Hurt, R. H., & Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chemical research in toxicology, 25(1), 15-34.
    [26] Bussy, C., Ali-Boucetta, H., & Kostarelos, K. (2013). Safety considerations for graphene: lessons learnt from carbon nanotubes. Accounts of chemical research, 46(3), 692-701.
    [27] Shih, C. J., Lin, S., Sharma, R., Strano, M. S., & Blankschtein, D. (2012). Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir, 28(1), 235-241.
    [28] Bitounis, D., Ali‐Boucetta, H., Hong, B. H., Min, D. H., & Kostarelos, K. (2013). Prospects and challenges of graphene in biomedical applications. Advanced Materials, 25(16), 2258-2268.
    [29] L. J. Cote, J. M. Kim, V. C. Tung, J. Luo, F. Kim, J. X. Huang, Pure Appl. Chem. 83 (2011) 95-110.
    [30] A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B. 102 (1998) 4477-4482.
    [31] H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287 (1998) 53-56.
    [32] L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc. 131 (2008) 1043-1049.
    [33] D. Cai, M. Song, J. Mater. Chem. 17 (2007) 3678-3680.
    [34] J. I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, J. M. D. Tasco´n, Langmuir. 24 (2008) 10560-10564.
    [35] Lenza, R. F. S., Jones, J. R., Vasconcelos, W. L., & Hench, L. L. (2003). In vitro release kinetics of proteins from bioactive foams. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 67(1), 121-129.
    [36] Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014-1017.
    [37] Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., ... & Srivastava, D. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell stem cell, 2(3), 219-229.
    [38] Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., ... & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS nano, 5(9), 6971-6980.
    [39] Lee, W. C., Lim, C. H. Y., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., & Loh, K. P. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano, 5(9), 7334-7341.
    [40] Akhavan, O., & Ghaderi, E. (2013). Differentiation of human neural stem cells into neural networks on graphene nanogrids. Journal of Materials Chemistry B, 1(45), 6291-6301.
    [41] Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano, 4(10), 5731-5736.
    [42] Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889.
    [43] Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., ... & Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature nanotechnology, 8(8), 594-601.
    [44] Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., ... & Fan, C. (2010). Graphene-based antibacterial paper. ACS nano, 4(7), 4317-4323.
    [45] Liu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., ... & Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 28(33), 12364-12372.
    [46] Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., ... & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS nano, 5(9), 6971-6980.
    [47] Krishnamoorthy, K., Umasuthan, N., Mohan, R., Lee, J., & Kim, S. J. (2012). Antibacterial activity of graphene oxide nanosheets. Science of Advanced Materials, 4(11), 1111-1117.
    [48] Liu, X., Sen, S., Liu, J., Kulaots, I., Geohegan, D., Kane, A., ... & Hurt, R. H. (2011). Antioxidant deactivation on graphenic nanocarbon surfaces. Small, 7(19), 2775-2785.
    [49] Saxena, S., Tyson, T. A., Shukla, S., Negusse, E., Chen, H., & Bai, J. (2011). Investigation of structural and electronic properties of graphene oxide. Applied Physics Letters, 99(1), 013104.
    [50] Valko, M. M. H. C. M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current medicinal chemistry, 12(10), 1161-1208.
    [51] Kadler, K. E., Baldock, C., Bella, J., & Boot-Handford, R. P. (2007). Collagens at a glance. Journal of cell science, 120(12), 1955-1958.
    [52] Zhang, D., Wu, X., Chen, J., & Lin, K. (2018). The development of collagen based composite scaffolds for bone regeneration. Bioactive materials, 3(1), 129-138.
    [53] Wang, W., & Yeung, K. W. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive materials, 2(4), 224-247.
    [54] Chvapil, M., & Droegemueller, W. (1981). Collagen sponge in gynecologic use. Obstetrics and gynecology annual, 10, 363-373.
    [55] Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science and Engineering: C, 71, 1293-1312.
    [56] Bosetti, M., & Cannas, M. (2005). The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials, 26(18), 3873-3879.
    [57] Gorustovich, A. A., Roether, J. A., & Boccaccini, A. R. (2010). Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Engineering Part B: Reviews, 16(2), 199-207.
    [58] Izquierdo-Barba, I., Arcos, D., Sakamoto, Y., Terasaki, O., López-Noriega, A., & Vallet-Regí, M. (2008). High-performance mesoporous bioceramics mimicking bone mineralization. Chemistry of Materials, 20(9), 3191-3198.
    [59] Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: a review. Composites science and technology, 70(13), 1764-1776.
    [60] Wu, C., & Chang, J. (2013). A review of bioactive silicate ceramics. Biomedical materials, 8(3), 032001.
    [61] Leu, A., & Leach, J. K. (2008). Proangiogenic potential of a collagen/bioactive glass substrate. Pharmaceutical research, 25(5), 1222-1229.
    [62] Baktur, R., Yoon, S. H., & Kwon, S. (2013). Effects of multiwalled carbon nanotube reinforced collagen scaffolds on the osteogenic differentiation of mesenchymal stem cells. Journal of Nanomaterials, 2013.
    [63] Gao, W. (2015). The chemistry of graphene oxide. In Graphene oxide (pp. 61-95). Springer, Cham.
    [64] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
    [65] Mitra, T., Manna, P. J., Raja, S. T. K., Gnanamani, A., & Kundu, P. P. (2015). Curcumin loaded nano graphene oxide reinforced fish scale collagen–a 3D scaffold biomaterial for wound healing applications. Rsc Advances, 5(119), 98653-98665.
    [66] Chen, G. Y., Pang, D. P., Hwang, S. M., Tuan, H. Y., & Hu, Y. C. (2012). A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33(2), 418-427.
    [67] Nayak, T. R., Andersen, H., Makam, V. S., Khaw, C., Bae, S., Xu, X., ... & Ozyilmaz, B. (2011). Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS nano, 5(6), 4670-4678.
    [68] Lee, W. C., Lim, C. H. Y., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., & Loh, K. P. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano, 5(9), 7334-7341.
    [69] Wang, A., Pu, K., Dong, B., Liu, Y., Zhang, L., Zhang, Z., ... & Zhu, Y. (2013). Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. Journal of Applied Toxicology, 33(10), 1156-1164.
    [70] 林佳君,分析與製備應用於引導骨再生之生物活性玻璃/膠原蛋白複合支架, 2012
    [71] Shih, S. J., Chen, C. Y., Lin, Y. C., Lee, J. C., & Chung, R. J. (2016). Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass. Advanced Powder Technology, 27(3), 1013-1020.
    [72] Ruiz, O. N., Fernando, K. S., Wang, B., Brown, N. A., Luo, P. G., McNamara, N. D., ... & Bunker, C. E. (2011). Graphene oxide: a nonspecific enhancer of cellular growth. ACS nano, 5(10), 8100-8107.

    QR CODE