簡易檢索 / 詳目顯示

研究生: 劉星望
Edison Lawby
論文名稱: 以知識軌跡與網絡特性探討CRISPR的發展
Exploring CRISPR Development Through the Knowledge Trajectory and Network Characteristics
指導教授: 何秀青
Mei H. C. Ho
口試委員: 劉顯仲
John S. Liu
陳宥杉
Yu-Shan Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 107
中文關鍵詞: CRISPRKnowledge CharacteristicsKnowledge FlowNetwork TypeAuthor NetworkKnowledge Trajectory
外文關鍵詞: CRISPR, Knowledge Characteristics, Knowledge Flow, Network Type, Author Network, Knowledge Trajectory
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary gene-editing technology that has captured the attention of scientists around the world. Through the analysis of the knowledge trajectory and emerging research themes within the field, as well as the interactions and networks within the CRISPR community, this study aims to understand the evolution and characteristics of CRISPR knowledge and identify areas for future research and development. By examining these factors, we can gain a deeper understanding of the knowledge evolution and characteristics of CRISPR and identify areas for future research and development.
    This research has uncovered five phases of knowledge evolution in the field of CRISPR. These phases range from fundamental studies to applied research, reflecting the shift toward the commercialization of CRISPR. Four major research themes were also identified, each with its unique knowledge characteristics. Two of these themes focus on fundamental studies of CRISPR, while the remaining two focus on applied research. Among these themes, the fundamental research theme appears to be the most crucial research theme from others.
    The interactions between scientists in this study appear to be influenced by the knowledge type of each research theme. Among the two fundamental research themes, cooperative behavior was observed due to the scattered influence and resources among groups of scientists. However, in contrast, competitive behavior was observed in the applied research themes, likely due to the priority of commercializing findings and a tendency towards secrecy among groups of scientists. This demonstrates how knowledge type can affect the way that scientists cooperate or compete within a research field.


    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary gene-editing technology that has captured the attention of scientists around the world. Through the analysis of the knowledge trajectory and emerging research themes within the field, as well as the interactions and networks within the CRISPR community, this study aims to understand the evolution and characteristics of CRISPR knowledge and identify areas for future research and development. By examining these factors, we can gain a deeper understanding of the knowledge evolution and characteristics of CRISPR and identify areas for future research and development.
    This research has uncovered five phases of knowledge evolution in the field of CRISPR. These phases range from fundamental studies to applied research, reflecting the shift toward the commercialization of CRISPR. Four major research themes were also identified, each with its unique knowledge characteristics. Two of these themes focus on fundamental studies of CRISPR, while the remaining two focus on applied research. Among these themes, the fundamental research theme appears to be the most crucial research theme from others.
    The interactions between scientists in this study appear to be influenced by the knowledge type of each research theme. Among the two fundamental research themes, cooperative behavior was observed due to the scattered influence and resources among groups of scientists. However, in contrast, competitive behavior was observed in the applied research themes, likely due to the priority of commercializing findings and a tendency towards secrecy among groups of scientists. This demonstrates how knowledge type can affect the way that scientists cooperate or compete within a research field.

    ABSTRACT i ACKNOWLEDGMENT ii TABLE OF CONTENT iii LIST OF FIGURES v LIST OF TABLES vi 1. INTRODUCTION 1 1.1 Why is CRISPR So Important? 1 1.2 Knowledge and Network 2 1.3 Research Questions and Structure 4 2. LITERATURE REVIEW 5 2.1 CRISPR The Genome Editing Tool 5 2.2 CRISPR Potential and Commercialization 10 2.3 Knowledge Characteristics and Lifecycle 13 2.4 Innovation and Cooperation 15 3. METHODOLOGY 22 3.1 Data Collection 22 3.2 Main Path Analysis 24 3.3 Clustering Analysis 28 4. CRISPR KNOWLEDGE TRAJECTORY 32 4.1 Descriptive Statistics 32 4.2 CRISPR Knowledge Phases 34 4.3 Research Theme in CRISPR Studies 47 5. KNOWLEDGE TYPE ACROSS THE AUTHOR NETWORK 53 5.1 Cooperation Trend in CRISPR 53 5.2 Knowledge Development in Different Cooperative Network 54 5.3 Cooperative Network Implications 61 6. CONCLUSION 63 6.1 CRISPR Knowledge Trajectory 63 6.2 CRISPR Cooperative Network 65 6.3 Limitation and Future Studies 66 REFERENCES 68 APPENDICES 89

    Afuah, A. (2000). How much do your co-opetitors' capabilities matter in the face of technological change? Strategic Management Journal, 21(3), 397-404. https://doi.org/https://doi.org/10.1002/(SICI)1097-0266(200003)21:3<397::AID-SMJ88>3.0.CO;2-1
    Aghion, P., & Jaravel, X. (2015). Knowledge Spillovers, Innovation and Growth. The Economic Journal, 125(583), 533-573. https://doi.org/https://doi.org/10.1111/ecoj.12199
    Ahuja, G. (2000). Collaboration Networks, Structural Holes, and Innovation: A Longitudinal Study. Administrative Science Quarterly, 45(3), 425-455. https://doi.org/10.2307/2667105
    Aman, R., Marsic, T., Sivakrishna Rao, G., Mahas, A., Ali, Z., Alsanea, M., Al-Qahtani, A., Alhamlan, F., & Mahfouz, M. (2021). iSCAN-V2: A One-Pot RT-RPA-CRISPR/Cas12b Assay for Point-of-Care SARS-CoV-2 Detection. Front Bioeng Biotechnol, 9, 800104. https://doi.org/10.3389/fbioe.2021.800104
    Anderson, M. S., Ronning, E. A., De Vries, R., & Martinson, B. C. (2007). The Perverse Effects of Competition on Scientists’ Work and Relationships. Science and Engineering Ethics, 13(4), 437-461. https://doi.org/10.1007/s11948-007-9042-5
    Athukoralage, J. S., Graham, S., Rouillon, C., Grüschow, S., Czekster, C. M., & White, M. F. (2020). The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. Elife, 9. https://doi.org/10.7554/eLife.55852
    Athukoralage, J. S., McMahon, S. A., Zhang, C., Grüschow, S., Graham, S., Krupovic, M., Whitaker, R. J., Gloster, T. M., & White, M. F. (2020). An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 577(7791), 572-575. https://doi.org/10.1038/s41586-019-1909-5
    Baldwin, Z., Jiao, B., Basu, A., Roth, J., Bender, M. A., Elsisi, Z., Johnson, K. M., Cousin, E., Ramsey, S. D., & Devine, B. (2022). Medical and Non-medical Costs of Sickle Cell Disease and Treatments from a US Perspective: A Systematic Review and Landscape Analysis. PharmacoEconomics - Open, 6(4), 469-481. https://doi.org/10.1007/s41669-022-00330-w
    Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99-120. https://doi.org/10.1177/014920639101700108
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. https://doi.org/10.1126/science.1138140
    Batagelj, V. (2003). Efficient algorithms for citation network analysis. arXiv preprint cs/0309023. https://doi.org/10.48550/arxiv.cs/0309023
    Becker, W., & Dietz, J. (2004). R&D Cooperation and Innovation Activities of Firms–Evidence for the German Manufacturing Industry. Research Policy, 33, 209-223. https://doi.org/10.1016/j.respol.2003.07.003
    Beloglazova, N., Brown, G., Zimmerman, M. D., Proudfoot, M., Makarova, K. S., Kudritska, M., Kochinyan, S., Wang, S., Chruszcz, M., Minor, W., Koonin, E. V., Edwards, A. M., Savchenko, A., & Yakunin, A. F. (2008). A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem, 283(29), 20361-20371. https://doi.org/10.1074/jbc.M803225200
    Beloglazova, N., Petit, P., Flick, R., Brown, G., Savchenko, A., & Yakunin, A. F. (2011). Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. Embo j, 30(22), 4616-4627. https://doi.org/10.1038/emboj.2011.377
    Bengtsson, M., Eriksson, J., & Wincent, J. (2010a). Co‐opetition dynamics – an outline for further inquiry. Competitiveness Review: An International Business Journal, 20(2), 194-214. https://doi.org/10.1108/10595421011029893
    Bengtsson, M., Eriksson, J., & Wincent, J. (2010b). Coopetition: New ideas for a new paradigm. In. Edward Elgar Publishing. https://doi.org/10.4337/9781849807241.00009
    Bengtsson, M., & Kock, S. (2000). ”Coopetition” in Business Networks—to Cooperate and Compete Simultaneously. Industrial Marketing Management, 29(5), 411-426. https://doi.org/https://doi.org/10.1016/S0019-8501(99)00067-X
    Bengtsson, M., & Raza-Ullah, T. (2016). A systematic review of research on coopetition: Toward a multilevel understanding. Industrial Marketing Management, 57, 23-39. https://doi.org/https://doi.org/10.1016/j.indmarman.2016.05.003
    Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N., & Peng, X. (2019). Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein. Cell, 179(2), 448-458.e411. https://doi.org/10.1016/j.cell.2019.09.003
    Björk, J., & Magnusson, M. (2009). Where Do Good Innovation Ideas Come From? Exploring the Influence of Network Connectivity on Innovation Idea Quality [https://doi.org/10.1111/j.1540-5885.2009.00691.x]. Journal of Product Innovation Management, 26(6), 662-670. https://doi.org/https://doi.org/10.1111/j.1540-5885.2009.00691.x
    Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading), 151(Pt 8), 2551-2561. https://doi.org/10.1099/mic.0.28048-0
    Brandenbuger, A., & Nalebuff, B. (2021). The Rules of Co-opetition. Harvard Business Review. https://hbr.org/2021/01/the-rules-of-co-opetition
    Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. (2004). Taking Stock of Networks and Organizations: A Multilevel Perspective. Academy of Management Journal, 47(6), 795-817. https://doi.org/10.5465/20159624
    Brokowski, C., & Adli, M. (2019). CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 431(1), 88-101. https://doi.org/https://doi.org/10.1016/j.jmb.2018.05.044
    Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V., & van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960-964. https://doi.org/10.1126/science.1159689
    Bubeck, F., Hoffmann, M. D., Harteveld, Z., Aschenbrenner, S., Bietz, A., Waldhauer, M. C., Börner, K., Fakhiri, J., Schmelas, C., Dietz, L., Grimm, D., Correia, B. E., Eils, R., & Niopek, D. (2018). Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat Methods, 15(11), 924-927. https://doi.org/10.1038/s41592-018-0178-9
    Canver, M. C., Smith, E. C., Sher, F., Pinello, L., Sanjana, N. E., Shalem, O., Chen, D. D., Schupp, P. G., Vinjamur, D. S., Garcia, S. P., Luc, S., Kurita, R., Nakamura, Y., Fujiwara, Y., Maeda, T., Yuan, G. C., Zhang, F., Orkin, S. H., & Bauer, D. E. (2015). BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527(7577), 192-197. https://doi.org/10.1038/nature15521
    Carte, J., Wang, R., Li, H., Terns, R. M., & Terns, M. P. (2008). Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev, 22(24), 3489-3496. https://doi.org/10.1101/gad.1742908
    Chen, C.-J. (2004). The effects of knowledge attribute, alliance characteristics, and absorptive capacity on knowledge transfer performance [https://doi.org/10.1111/j.1467-9310.2004.00341.x]. R&D Management, 34(3), 311-321. https://doi.org/https://doi.org/10.1111/j.1467-9310.2004.00341.x
    Cho, S. W., Kim, S., Kim, J. M., & Kim, J.-S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(3), 230-232. https://doi.org/10.1038/nbt.2507
    Cohen, J. (2017). The Birth of CRISPR Inc. Science, 355(6326), 680-684. https://doi.org/doi:10.1126/science.355.6326.680
    Collins, F. S., & Fink, L. (1995). The Human Genome Project. Alcohol Health Res World, 19(3), 190-195.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. https://doi.org/10.1126/science.1231143
    de Faria, P., Lima, F., & Santos, R. (2010). Cooperation in innovation activities: The importance of partners. Research Policy, 39(8), 1082-1092. https://doi.org/https://doi.org/10.1016/j.respol.2010.05.003
    DeBoy, R. T., Mongodin, E. F., Emerson, J. B., & Nelson, K. E. (2006). Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol, 188(7), 2364-2374. https://doi.org/10.1128/jb.188.7.2364-2374.2006
    Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607. https://doi.org/10.1038/nature09886
    Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P., & Moineau, S. (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 190(4), 1390-1400. https://doi.org/10.1128/jb.01412-07
    DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 41(7), 4336-4343. https://doi.org/10.1093/nar/gkt135
    Doudna, J., Doxzen, K., & Jinek, M. (2019). CRISPR-Cas9: A New Tool for Genome Editing. Retrieved 31 August 2022, from https://explorebiology.org/collections/genetics/crispr-cas9-a-new-tool-for-genome-editing
    Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/doi:10.1126/science.1258096
    du Plessis, M. (2007). The role of knowledge management in innovation. Journal of Knowledge Management, 11(4), 20-29. https://doi.org/10.1108/13673270710762684
    Eric. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. https://doi.org/10.1016/j.cell.2015.12.041
    Fang, F. C., & Casadevall, A. (2015). Competitive Science: Is Competition Ruining Science? Infection and Immunity, 83(4), 1229-1233. https://doi.org/10.1128/iai.02939-14
    Fernández, C. R. (2021). Eight Diseases CRISPR Technology Could Cure. LABIOTECH.eu. https://www.labiotech.eu/best-biotech/crispr-technology-cure-disease/
    Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
    Galvin, P., Burton, N., Singh, P. J., Sarpong, D., Bach, N., & Teo, S. (2020). Network rivalry, Competition and Innovation. Technological Forecasting and Social Change, 161, 120253. https://doi.org/https://doi.org/10.1016/j.techfore.2020.120253
    Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 109(39), E2579-2586. https://doi.org/10.1073/pnas.1208507109
    Gast, J., Gundolf, K., Harms, R., & Matos Collado, E. (2019). Knowledge management and coopetition: How do cooperating competitors balance the needs to share and protect their knowledge? Industrial Marketing Management, 77, 65-74. https://doi.org/https://doi.org/10.1016/j.indmarman.2018.12.007
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442-451. https://doi.org/10.1016/j.cell.2013.06.044
    Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826. https://doi.org/10.1073/pnas.122653799
    Gloor, P. A., Laubacher, R., Dynes, S. B. C., & Zhao, Y. (2003). Visualization of Communication Patterns in Collaborative Innovation Networks - Analysis of Some W3C Working Groups Proceedings of the twelfth international conference on Information and knowledge management, New Orleans, LA, USA. https://doi.org/10.1145/956863.956875
    Grand View Research (2022). CRISPR And Cas Genes Market Size, Share & Trends Analysis Report By End-use (CROs, Biotech & Pharma Companies), By Application (Biomedical, Agriculture), By Product & Service, By Region, And Segment Forecasts, 2022 - 2030. G. V. Research. https://www.grandviewresearch.com/industry-analysis/crispr-associated-cas-genes-market
    Gratz, S. J., Wildonger, J., Harrison, M. M., & O'Connor-Giles, K. M. (2013). CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin), 7(4), 249-255. https://doi.org/10.4161/fly.26566
    Gretzinger, S., Hinz, H., & Matiaske, W. (2010). Cooperation in Innovation Networks: The Case of Danish and German SMEs. management revu, 21, 193-216. https://doi.org/10.5771/0935-9915-2010-2-193
    Guilinger, J. P., Thompson, D. B., & Liu, D. R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 32(6), 577-582. https://doi.org/10.1038/nbt.2909
    Guo, S., Choi, T.-M., & Shen, B. (2020). Green product development under competition: A study of the fashion apparel industry. European Journal of Operational Research, 280(2), 523-538. https://doi.org/https://doi.org/10.1016/j.ejor.2019.07.050
    Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1(6), e60. https://doi.org/10.1371/journal.pcbi.0010060
    Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., Terns, R. M., & Terns, M. P. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5), 945-956. https://doi.org/10.1016/j.cell.2009.07.040
    Harbison, J. R., & Pekar, P. P. (1998). Smart Alliances: A Practical Guide to Repeatable Success. Jossey-Bass.
    Hermans, P. W., van Soolingen, D., Bik, E. M., de Haas, P. E., Dale, J. W., & van Embden, J. D. (1991). Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun, 59(8), 2695-2705. https://doi.org/10.1128/iai.59.8.2695-2705.1991
    Ho, M. H.-C., Liu, J. S., & Chang, K. C. T. (2017). To include or not: the role of review papers in citation-based analysis. Scientometrics, 110(1), 65-76. https://doi.org/10.1007/s11192-016-2158-0
    Horlbeck, M. A., Gilbert, L. A., Villalta, J. E., Adamson, B., Pak, R. A., Chen, Y., Fields, A. P., Park, C. Y., Corn, J. E., Kampmann, M., & Weissman, J. S. (2016). Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife, 5. https://doi.org/10.7554/eLife.19760
    Horvath, P., Romero, D. A., Coûté-Monvoisin, A. C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C., & Barrangou, R. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol, 190(4), 1401-1412. https://doi.org/10.1128/jb.01415-07
    Howard, J. A., Delmas, S., Ivančić-Baće, I., & Bolt, E. L. (2011). Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J, 439(1), 85-95. https://doi.org/10.1042/bj20110901
    Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., & Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827-832. https://doi.org/10.1038/nbt.2647
    Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H. A., Lin, Z., & Liu, D. R. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556(7699), 57-63. https://doi.org/10.1038/nature26155
    Huenteler, J., Schmidt, T. S., Ossenbrink, J., & Hoffmann, V. H. (2016). Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation. Technological Forecasting and Social Change, 104, 102-121. https://doi.org/https://doi.org/10.1016/j.techfore.2015.09.022
    Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39-63. https://doi.org/https://doi.org/10.1016/0378-8733(89)90017-8
    Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., Joung, J. K., Peterson, R. T., & Yeh, J. R. (2013). Heritable and precise zebrafish genome editing using a CRISPR-Cas system. Plos One, 8(7), e68708. https://doi.org/10.1371/journal.pone.0068708
    Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3), 227-229. https://doi.org/10.1038/nbt.2501
    Isaac, R. S., Jiang, F., Doudna, J. A., Lim, W. A., Narlikar, G. J., & Almeida, R. (2016). Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 5. https://doi.org/10.7554/eLife.13450
    Isaacson, W. (2021). The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race. Simon Schuster.
    Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Journal of Bacteriology, 200(7), JB.00580-00517. https://doi.org/10.1128/jb.00580-17
    Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
    Iverson, J. O., & Mcphee, R. D. (2002). Knowledge Management in Communities of Practice:Being True to the Communicative Character of Knowledge. Management Communication Quarterly, 16(2), 259-266. https://doi.org/10.1177/089331802237239
    Jansen, R., Embden, J. D. A. V., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
    Jefferson, O. A., Lang, S., Williams, K., Koellhofer, D., Ballagh, A., Warren, B., Schellberg, B., Sharma, R., & Jefferson, R. (2021). Mapping CRISPR-Cas9 public and commercial innovation using The Lens institutional toolkit. Transgenic Research, 30(4), 585-599. https://doi.org/10.1007/s11248-021-00237-y
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239. https://doi.org/10.1038/nbt.2508
    Jinek, M., Charpentier, E., Chylinski, K., Doudna Cate James, H., Lim, W., & Qi, L. E. I. (2013). Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription (WO Patent No. WO 2013/176772 A1). https://lens.org/076-607-252-634-172
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829
    Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471. https://doi.org/10.7554/eLife.00471
    Kim, K., Park, S. W., Kim, J. H., Lee, S. H., Kim, D., Koo, T., Kim, K. E., Kim, J. H., & Kim, J. S. (2017). Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res, 27(3), 419-426. https://doi.org/10.1101/gr.219089.116
    Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490-495. https://doi.org/10.1038/nature16526
    Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P., Li, Z., Peterson, R. T., Yeh, J. R., Aryee, M. J., & Joung, J. K. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561), 481-485. https://doi.org/10.1038/nature14592
    Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866-869. https://doi.org/10.1126/science.aat5011
    Knott, G. J., Thornton, B. W., Lobba, M. J., Liu, J.-J., Al-Shayeb, B., Watters, K. E., & Doudna, J. A. (2019). Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nature Structural & Molecular Biology, 26(4), 315-321. https://doi.org/10.1038/s41594-019-0208-z
    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424. https://doi.org/10.1038/nature17946
    Kondo, S., & Ueda, R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics, 195(3), 715-721. https://doi.org/10.1534/genetics.113.156737
    Krafft, J., Quatraro, F., & Saviotti, P. P. (2014). Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan. Journal of Evolutionary Economics, 24(3), 587-622. https://doi.org/10.1007/s00191-014-0338-8
    Kraus, S., Meier, F., Niemand, T., Bouncken, R. B., & Ritala, P. (2018). In search for the ideal coopetition partner: an experimental study. Review of Managerial Science, 12(4), 1025-1053. https://doi.org/10.1007/s11846-017-0237-0
    Kunin, V., Sorek, R., & Philip, H. (2007). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biology, 8, R61. https://doi.org/10.1186/gb-2007-8-4-r61
    Ledford, H. (2016). Bitter fight over CRISPR patent heats up. Nature, 529(7586), 265-265. https://doi.org/10.1038/nature.2015.17961
    Ledford, H. (2022). Major CRISPR patent decision won't end tangled dispute. Nature, 603(7901), 373-374. https://doi.org/10.1038/d41586-022-00629-y
    Ledford, H., & Callaway, E. (2020). Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature, 586(7826), 346-347. https://doi.org/10.1038/d41586-020-02765-9
    Lee, J.-H., Kim, Y.-G., & Yu, S.-H. (2001). Stage Model for Knowledge Management. Hawaii International Conference on System Sciences, 7, 7071. https://doi.org/10.1109/HICSS.2001.927103
    Liang, P., Ding, C., Sun, H., Xie, X., Xu, Y., Zhang, X., Sun, Y., Xiong, Y., Ma, W., Liu, Y., Wang, Y., Fang, J., Liu, D., Songyang, Z., Zhou, C., & Huang, J. (2017). Correction of β-thalassemia mutant by base editor in human embryos. Protein & Cell, 8(11), 811-822. https://doi.org/10.1007/s13238-017-0475-6
    Lillestøl, R. K., Shah, S. A., Brügger, K., Redder, P., Phan, H., Christiansen, J., & Garrett, R. A. (2009). CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol, 72(1), 259-272. https://doi.org/10.1111/j.1365-2958.2009.06641.x
    Lin, H.-F. (2007). A stage model of knowledge management: an empirical investigation of process and effectiveness. Journal of Information Science, 33(6), 643-659. https://doi.org/10.1177/0165551506076395
    Lin, H. F. (2011). Antecedents of the stage‐based knowledge management evolution. Journal of Knowledge Management, 15(1), 136-155. https://doi.org/10.1108/13673271111108747
    Lindenfors, P. (2017). For Whose Benefit?: The Biological and Cultural Evolution of Human Cooperation. Springer.
    Lindkvist, L. (2005). Knowledge Communities and Knowledge Collectivities: A Typology of Knowledge Work in Groups*. Journal of Management Studies, 42(6), 1189-1210. https://doi.org/https://doi.org/10.1111/j.1467-6486.2005.00538.x
    Lintner, N. G., Kerou, M., Brumfield, S. K., Graham, S., Liu, H., Naismith, J. H., Sdano, M., Peng, N., She, Q., Copié, V., Young, M. J., White, M. F., & Lawrence, C. M. (2011). Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem, 286(24), 21643-21656. https://doi.org/10.1074/jbc.M111.238485
    Liu, J. S., Ho, M. H.-C., & Lu, L. Y. Y. (2017). Recent Themes in Social Networking Service Research. Plos One, 12(1), e0170293. https://doi.org/10.1371/journal.pone.0170293
    Liu, J. S., & Lu, L. Y. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528-542. https://doi.org/10.1002/asi.21692
    Liu, J. S., Lu, L. Y. Y., & Ho, M. H.-C. (2019). A Few Notes on Main Path Analysis. Scientometrics, 119(1), 379-391. https://doi.org/10.1007/s11192-019-03034-x
    Liu, L., Xu, Z., Awayda, K., Dollery, S. J., Bao, M., Fan, J., Cormier, D., O'Connell, M. R., Tobin, G. J., & Du, K. (2022). Gold Nanoparticle-Labeled CRISPR-Cas13a Assay for the Sensitive Solid-State Nanopore Molecular Counting [https://doi.org/10.1002/admt.202101550]. Advanced Materials Technologies, 7(3), 2101550. https://doi.org/https://doi.org/10.1002/admt.202101550
    Liu, T. Y., Knott, G. J., Smock, D. C. J., Desmarais, J. J., Son, S., Bhuiya, A., Jakhanwal, S., Prywes, N., Agrawal, S., de León Derby, M. D., Switz, N. A., Armstrong, M., Harris, A. R., Charles, E. J., Thornton, B. W., Fozouni, P., Shu, J., Stephens, S. I., Kumar, G. R., . . . Doudna, J. A. (2021). Accelerated RNA detection using tandem CRISPR nucleases. medRxiv. https://doi.org/10.1101/2021.03.19.21253328
    Lu, L. Y. Y., & Liu, J. S. (2016). A novel approach to identify the major research themes and development trajectory: The case of patenting research. Technological Forecasting and Social Change, 103, 71-82. https://doi.org/https://doi.org/10.1016/j.techfore.2015.10.018
    Mahas, A., Wang, Q., Marsic, T., & Mahfouz, M. (2021). A Novel Miniature CRISPR-Cas13 System for SARS-CoV-2 Diagnostics. Acs Synthetic Biology, XXXX. https://doi.org/10.1021/acssynbio.1c00181
    Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 1, 7. https://doi.org/10.1186/1745-6150-1-7
    Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6), 467-477. https://doi.org/10.1038/nrmicro2577
    Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., van der Oost, J., . . . Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722-736. https://doi.org/10.1038/nrmicro3569
    Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., . . . Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67-83. https://doi.org/10.1038/s41579-019-0299-x
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826. https://doi.org/10.1126/science.1232033
    Marraffini, L. A., & Sontheimer, E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909), 1843-1845. https://doi.org/10.1126/science.1165771
    Merton, R. K. (1957). Priorities in Scientific Discovery: A Chapter in the Sociology of Science. American Sociological Review, 22(6), 635-659. https://doi.org/10.2307/2089193
    Mojica, F. J., & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends in Microbiology, 24(10), 811-820.
    Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 60(2), 174-182. https://doi.org/10.1007/s00239-004-0046-3
    Mojica, F. J. M., Ferrer, C., Juez, G., & Rodríguez-Valera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 17(1), 85-93. https://doi.org/https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x
    Mojica, F. J. M., & Garrett, R. A. (2013). Discovery and Seminal Developments in the CRISPR Field. In (pp. 1-31). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34657-6_1
    Mojica, F. J. M., Juez, G., & Rodriguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 613-621. https://doi.org/https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
    Mojica, F. J. M., & Rodriguez-Valera, F. (2016). The discovery of CRISPR in archaea and bacteria. The FEBS Journal, 283(17), 3162-3169. https://doi.org/10.1111/febs.13766
    Möller, K. K., & Halinen, A. (1999). Business Relationships and Networks:: Managerial Challenge of Network Era. Industrial Marketing Management, 28(5), 413-427. https://doi.org/https://doi.org/10.1016/S0019-8501(99)00086-3
    Najafi-Tavani, S., Najafi-Tavani, Z., Naudé, P., Oghazi, P., & Zeynaloo, E. (2018). How collaborative innovation networks affect new product performance: Product innovation capability, process innovation capability, and absorptive capacity. Industrial Marketing Management, 73, 193-205. https://doi.org/https://doi.org/10.1016/j.indmarman.2018.02.009
    Nakamura, M., Srinivasan, P., Chavez, M., Carter, M. A., Dominguez, A. A., La Russa, M., Lau, M. B., Abbott, T. R., Xu, X., Zhao, D., Gao, Y., Kipniss, N. H., Smolke, C. D., Bondy-Denomy, J., & Qi, L. S. (2019). Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun, 10(1), 194. https://doi.org/10.1038/s41467-018-08158-x
    Nakata, A., Amemura, M., & Makino, K. (1989). Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol, 171(6), 3553-3556. https://doi.org/10.1128/jb.171.6.3553-3556.1989
    Nalebuff, B. J., & Brandenburger, A. M. (1997). Co‐opetition: Competitive and cooperative business strategies for the digital economy. Strategy & Leadership, 25(6), 28-33. https://doi.org/10.1108/eb054655
    Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J. A., Thomas, G., Kuca, K., & Tripathi, V. (2021). Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci, 22(7). https://doi.org/10.3390/ijms22073327
    Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156(5), 935-949. https://doi.org/10.1016/j.cell.2014.02.001
    Park, B.-J., & Kim, D. (2021). Coopetition dynamics between giant entrants and incumbents in a new convergent segment: a case in the smartphone industry. Asian Journal of Technology Innovation, 29(3), 455-476. https://doi.org/10.1080/19761597.2020.1818109
    Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., Guilak, F., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2013). RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods, 10(10), 973-976. https://doi.org/10.1038/nmeth.2600
    Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38, 1115-1166. https://doi.org/10.1177/0149206311432640
    Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading), 151(Pt 3), 653-663. https://doi.org/10.1099/mic.0.27437-0
    Pul, U., Wurm, R., Arslan, Z., Geissen, R., Hofmann, N., & Wagner, R. (2010). Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol, 75(6), 1495-1512. https://doi.org/10.1111/j.1365-2958.2010.07073.x
    Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
    Rahimi, H., Salehiabar, M., Barsbay, M., Ghaffarlou, M., Kavetskyy, T., Sharafi, A., Davaran, S., Chauhan, S. C., Danafar, H., Kaboli, S., Nosrati, H., Yallapu, M. M., & Conde, J. (2021). CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 6(4), 1430-1445. https://doi.org/10.1021/acssensors.0c02312
    Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V., Sharp, P. A., & Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546), 186-191. https://doi.org/10.1038/nature14299
    Randolph, R. V., Hu, H.-f., & Silvernail, K. D. (2020). Better the devil you know: Inter-organizational information technology and network social capital in coopetition networks. Information & Management, 57(6), 103344. https://doi.org/https://doi.org/10.1016/j.im.2020.103344
    Ryu, W., McCann, B. T., & Reuer, J. J. (2017). Geographic Co-location of Partners and Rivals: Implications for the Design of R&D Alliances. Academy of Management Journal, 61(3), 945-965. https://doi.org/10.5465/amj.2016.0416
    Schouls, L. M., Reulen, S., Duim, B., Wagenaar, J. A., Willems, R. J., Dingle, K. E., Colles, F. M., & Van Embden, J. D. (2003). Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol, 41(1), 15-26. https://doi.org/10.1128/jcm.41.1.15-26.2003
    Seepana, C., Paulraj, A., & Huq, F. A. (2020). The architecture of coopetition: Strategic intent, ambidextrous managers, and knowledge sharing. Industrial Marketing Management, 91, 100-113. https://doi.org/https://doi.org/10.1016/j.indmarman.2020.08.012
    Sherkow, J. S. (2015). Law, history and lessons in the CRISPR patent conflict. Nature Biotechnology, 33(3), 256-257. https://doi.org/10.1038/nbt.3160
    Shi, C., Zhang, F., Zhu, P., & Shi, Q. (2021). How Is Knowledge Perceived as Power? A Multilevel Model of Knowledge Power in Innovation Networks [Conceptual Analysis]. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.630762
    Sindakis, S., Aggarwal, S., & Chen, C. (2020). Coopetitive dynamics and inter-organizational knowledge flow among venture capital firms. Kybernetes, 49(1), 47-72. https://doi.org/10.1108/K-05-2019-0302
    Sonenshein, S., Nault, K., & Obodaru, O. (2017). Competition of a Different Flavor: How a Strategic Group Identity Shapes Competition and Cooperation. Administrative Science Quarterly, 62(4), 626-656. https://doi.org/10.1177/0001839217704849
    Steinmetz, A. (2015). Competition, innovation, and the effect of R&D knowledge. Journal of Economics, 115(3), 199-230. https://doi.org/10.1007/s00712-014-0415-3
    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507(7490), 62-67. https://doi.org/10.1038/nature13011
    Sun, Y., Wang, T., & Gu, X. (2021). Study on Cooperative Culture, Network Power and Knowledge Flow from the Perspective of Enterprise Innovation Network Management. In (Vol. 253). Les Ulis: EDP Sciences.
    Tang, J. (2006). Competition and innovation behaviour. Research Policy, 35(1), 68-82. https://doi.org/https://doi.org/10.1016/j.respol.2005.08.004
    Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A. J., Le, L. P., Aryee, M. J., & Joung, J. K. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2), 187-197. https://doi.org/10.1038/nbt.3117
    Tyson, G. W., & Banfield, J. F. (2008). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol, 10(1), 200-207. https://doi.org/10.1111/j.1462-2920.2007.01444.x
    Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. https://doi.org/10.1016/j.cell.2013.04.025
    Wang, S., & Yang, L. (2022). Spatial competition, strategic R&D and the structure of innovation networks. Journal of Business Research, 139, 13-31. https://doi.org/https://doi.org/10.1016/j.jbusres.2021.09.037
    Wei, S., Zhang, Z., Ke, G. Y., & Chen, X. (2019). The more cooperation, the better? Optimizing enterprise cooperative strategy in collaborative innovation networks. Physica A: Statistical Mechanics and its Applications, 534, 120810. https://doi.org/https://doi.org/10.1016/j.physa.2019.04.046
    Westermann, L., Neubauer, B., & Köttgen, M. (2021). Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch, 473(1), 1-2. https://doi.org/10.1007/s00424-020-02497-9
    Westra, E. R., van Erp, P. B., Künne, T., Wong, S. P., Staals, R. H., Seegers, C. L., Bollen, S., Jore, M. M., Semenova, E., Severinov, K., de Vos, W. M., Dame, R. T., de Vries, R., Brouns, S. J., & van der Oost, J. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell, 46(5), 595-605. https://doi.org/10.1016/j.molcel.2012.03.018
    Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S. M., Ma, W., & Doudna, J. A. (2009). Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure, 17(6), 904-912. https://doi.org/10.1016/j.str.2009.03.019
    Williams, C., & Lee, S. H. (2009). Resource allocations, knowledge network characteristics and entrepreneurial orientation of multinational corporations. Research Policy, 38(8), 1376-1387. https://doi.org/https://doi.org/10.1016/j.respol.2009.05.007
    Wilson, R. C., & Carroll, D. (2019). The Daunting Economics of Therapeutic Genome Editing. Crispr j, 2(5), 280-284. https://doi.org/10.1089/crispr.2019.0052
    Wu, L., & Xu, M. (2022). Research on Cooperative Innovation Network Structure and Evolution Characteristics of Electric Vehicle Industry. Sustainability, 14(10).
    Xie, X., Fang, L., & Zeng, S. (2016). Collaborative innovation network and knowledge transfer performance: A fsQCA approach. Journal of Business Research, 69(11), 5210-5215. https://doi.org/https://doi.org/10.1016/j.jbusres.2016.04.114
    Yanai, K., Murakami, T., & Bibb, M. (2006). Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A, 103(25), 9661-9666. https://doi.org/10.1073/pnas.0603251103
    Yang, Q., & Lonardi, S. (2007). A parallel edge-betweenness clustering tool for Protein-Protein Interaction networks. International Journal of Data Mining and Bioinformatics, 1(3), 241. https://doi.org/10.1504/ijdmb.2007.011611
    Zagzebski, L. (2017). What is Knowledge? In The Blackwell Guide to Epistemology (pp. 92-116). https://doi.org/https://doi.org/10.1002/9781405164863.ch3
    Zakrzewska-Bielawska, A. (2015). Coopetition? Yes, but who with? The selection of coopetition partners by high-tech firms. The Journal of American Academy of Business, Cambridge, 20, 159-166.
    Zhang, F. (2014). CRISPR-Cas systems and methods for altering expression of gene products (US Patent No. US 8697359 B1). https://lens.org/014-343-086-528-757
    Zhang, J., Rouillon, C., Kerou, M., Reeks, J., Brugger, K., Graham, S., Reimann, J., Cannone, G., Liu, H., Albers, S. V., Naismith, J. H., Spagnolo, L., & White, M. F. (2012). Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell, 45(3), 303-313. https://doi.org/10.1016/j.molcel.2011.12.013
    Zhang, Y., Malzahn, A. A., Sretenovic, S., & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5(8), 778-794. https://doi.org/10.1038/s41477-019-0461-5
    Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661-677. https://doi.org/10.1038/s41580-020-00288-9

    無法下載圖示 全文公開日期 2024/03/14 (校內網路)
    全文公開日期 2025/03/14 (校外網路)
    全文公開日期 2025/03/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE