簡易檢索 / 詳目顯示

研究生: 葉松霈
SONG-PEI YE
論文名稱: 基於Nelder-Mead法可適用於複雜部分遮蔭之新型全域最大功率追蹤技術
A Novel Global Maximum Power Point Tracking Algorithm Based on Simplex Nelder-Mead Technique for Complicated Partial Shading Conditions
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
劉添華
Tian-Hua Liu
邱煌仁
Huang-Jen Chiu
郭政謙
Cheng-Chien Kuo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 太陽能發電系統全域最大功率追蹤Nelder-Mead演算法部分遮蔭
外文關鍵詞: Nelder-Mead(NM)
相關次數: 點閱:213下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種新型可適用於複雜遮蔭條件下的太陽能發電系統(Photovoltaic Generation System, PGS)的全域最大功率追蹤法(Global Maximum Power Point Tracking, GMPPT),所提方法是基於一常用於解決複雜的優化問題,並具有易實現、無須複雜運算、收斂速度快、精度高等優點的Nelder-Mead (NM)技術,藉由四種模式的相互切換,可以快速、準確及低損耗的追蹤到全域最大功率點(Global Maximum Power Point, GMPP)。本文功率級電路採用升壓轉換器,並使用TI C2000系列微控制器實現數位控制和所提追蹤法功能。
    為了驗證所提出的GMPPT方法的有效性,本文以5串1並太陽能電池模組為例,提供了與其他四種典型GMPPT或代表性的方法之252種不重複照度的遮蔭樣式和243種可重複照度的遮蔭樣式的模擬結果,及不重複照度的遮蔭樣式中的3種複雜遮蔭樣式的實驗結果,根據結果顯示,所提方法在不重複及可重複種遮蔭樣式下的追蹤準確率分別為98.4%和95.8%,平均追蹤精確度則分別為99.6%和99.9%,全域最大功率的追蹤性能皆為所有比較方法中的最佳;其中在GMPP追蹤速度追蹤速度方面則是比軟計算方法快三倍以上。


    In this thesis, a novel global maximum power point tracking (GMPPT) algorithm for operating in photovoltaic generation system (PGS) under complex partial shading conditions is proposed. The presented GMPPT technique is based on the Nelder-Mead (NM) simplex technique, which is commonly used to solve complicated optimization problems and has advantages such as simple implementation, derivative-free nature, fast convergence, and high accuracy.
    In order to verify the effectiveness of the proposed GMPPT method, this thesis takes five series and one parallel solar cell modules as an example. The simulation results of 252 shading styles patterns with non-repeatable irradiance levels and 243 shading patterns under repeatable irradiance levels compared with other four typical GMPPT or representative methods, and the experimental results of three complex shading patterns with non- repeatable irradiance are provided. According to the results, The tracking accuracy of the proposed method is 98.4% and 95.8% respectively under non-repeatable and repeatable shading patterns, and the average tracking accuracy is 99.6% and 99.9% respectively. The tracking performance of the GMPPT is the best of all comparison methods; among them, the GMPP tracking speed is the best. It is more than three times faster than the soft computing method.

    第1章 緒論 1.1 研究背景 1.2 研究動機及目的 1.3 文獻回顧 1.4 論文大綱 第2章 太陽能電池模型建模 2.1 單二極體模型 2.1.1 單二極體模型介紹 2.1.2 太陽能電池模組參數 2.1.3 基於朗伯W(Lambert W)函數之太陽能電池單二極體模型 2.2 單二極體模型之五參數求解 2.2.1 五參數精確求解法 2.2.2 五參數近似求解法[41] 2.2.3 非標準測試環境下的五參數[41] 2.2.4 非標準測試環境下的五參數計算[41] 2.3 太陽能電池特性曲線 2.4 部分遮蔭情況(Partial Shading Condition, PSC) 第3章 太陽能全域最大功率追蹤技術 3.1 軟計算型全域最大功率追蹤技術 3.1.1 粒子群優化法 3.1.1.1 PSO應用於MPPT[22] 3.1.2 亂數搜尋法 3.1.2.1 RSM應用於MPPT[35] 3.1.3 人工蜂群演算法 3.1.3.1 ABC應用於MPPT[27] 3.1.4 杜鵑鳥搜尋法 3.1.4.1 CS應用於MPPT[26] 3.1.5 模擬退火演算法 3.1.5.1 SA應用於MPPT[30] 3.1.6 蝙蝠演算法 3.1.6.1 BA應用於MPPT[31] 3.2 兩階段型全域最大功率追蹤技術 3.2.1 切段搜尋法[36] 3.2.2 簡化型狀態估測法[37] 3.3 直接型全域最大功率追蹤技術 3.3.1 決定型杜鵑鳥法[38] 3.3.2 決定型粒子群優化法[33] 3.3.3 模式搜索法[39] 3.3.4 舒伯特法[40] 3.4 本文所提之全域最大功率追蹤技術簡介 3.4.1 NM法介紹[34] 3.4.2 NM法應用於全域最大功率追蹤 第4章 模擬與實驗結果的分析與討論 4.1 測試環境與方法介紹 4.2 三種遮蔭樣式下的模擬結果與分析 4.2.1 軟計算型全域最大功率追蹤法的模擬結果與分析 4.2.2 決定型粒子群優化法的模擬結果與分析 4.2.3 切段搜尋法(SSM)的模擬結果與分析 4.2.4 本文所提方法的模擬結果與分析 4.3 不重複及可重複照度的遮蔽樣式之模擬結果與分析 4.4 實驗結果與分析 第5章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Y, Shen. T, H, Kwan. H, Yang. Parametric and global seasonal analysis of a hybrid PV/T-CCA system for combined CO2 capture and power generation. Applied Energy. 2022;311(1):118681.
    [2] Y, Zhang. P, Hao. H, Lu. J, Ma. M, Yang Modelling and estimating performance for PV module under varying operating conditions independent of reference condition. Applied Energy. 2022;310(15):118527.
    [3] Z, Chen. H, Yu. L, Luo. L, Wu. Q, Zheng. Z, Wu. S, Cheng. P, Lin. Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves. Applied Energy. 2021;292(15):116929.
    [4] N, Pichel. M, Vivar. M, Fuentes. Comparative analysis of the SolWat photovoltaic performance regarding different PV technologies and hydraulic retention times. Applied Energy. 2021;292(15):116902.
    [5] S, Jung. J, Jeoung. B, H, Kang. T, Hong. Optimal planning of a rooftop PV system using GIS-based reinforcement learning. Applied Energy. 2021;298(15):117239.
    [6] R, Ramaprabha. M, Balaji. B, L, Mathur. Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. Electrical Power and Energy Systems. 2012;43(1):754-765.
    [7] N, A, Ahmed. M, Miyatake. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power Systems Research. 2008;78(5):777-784.
    [8] R, Ramaprabha. M, Balaji. B, L, Mathur. Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. Electrical Power and Energy Systems. 2012;43(1):754-765.
    [9] S, Xu. Y, Gao. G, Zhou. G, Mao. A Global Maximum Power Point Tracking Algorithm for Photovoltaic Systems Under Partially Shaded Conditions Using Modified Maximum Power Trapezium Method. IEEE Transactions on Industrial Electronics. 2021;68(1):370-380.
    [10] P, Bharadwaj. V, John. Optimized Global Maximum Power Point Tracking of Photovoltaic Systems Based on Rectangular Power Comparison. IEEE Access. 2021;9:53602-53616.
    [11] S, MajidHashemzadeh. A new model-based technique for fast and accurate tracking of global maximum power point in photovoltaic arrays under partial shading conditions. Renewable Energy. 2019;139:1061-1076.
    [12] S, A, Rizzo. ANN based MPPT method for rapidly variable shading conditions. Applied Energy. 2015;145(1):124-132.
    [13] S, Mohanty. B, SubudhiA. P, K, Ray. Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System. IEEE Transactions on Energy Conversion. 2017;32(1):340-347.
    [14] M, E, Başoğlu. A Fast GMPPT Algorithm Based on PV Characteristic for Partial Shading Conditions. Electronics. 2019;8(10):1142.
    [15] J, Zhao. X, Zhou. Y, Ma. Y, Liu. Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions. Energies. 2017;10(1):120.
    [16] A, A, Zadeh. M, Toulabi. A, S, Dobakhshari. S, T, Broujeni. A, M, Ranjbar. A novel technique to extract the maximum power of photovoltaic array in partial shading conditions. Renewable Energy. 2018;101:500-512.
    [17] S, Lyden. H, Galligan. M, E, Haque. A Hybrid Simulated Annealing and Perturb and Observe Maximum Power Point Tracking Method. IEEE Systems Journal. 2021;15(3):4325 -4333.
    [18] X, Li. H, Wen. Y, Hu. L, Jiang. W, Xiao. Modified Beta Algorithm for GMPPT and Partial Shading Detection in Photovoltaic Systems. IEEE Transactions on Power Electronics. 2018;33(3):2172-2186.
    [19] Y, H, Liu. J, H, Chen. J, W, Huang. Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method. Solar Energy. 2014;103:350-363.
    [20] H, Patel. V, Agarwal. Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Industrial Electronics. 2008;55(4):1689-1698.
    [21] M, H, Mobarak. J, Bauman. A Fast Parabolic-Assumption Algorithm for Global MPPT of Photovoltaic Systems Under Partial Shading Conditions. IEEE Transactions on Industrial Electronics (Early Access). 2021; pp. 1-1.
    [22] G, S, Chawda. O, P, Mahela. N, Gupta. M, Khosravy. T, Senjyu Incremental Conductance Based Particle Swarm Optimization Algorithm for Global Maximum Power Tracking of Solar-PV under Nonuniform Operating Conditions. Applied Sciences. 2020;10(13):4575.
    [23] K, H, Chao. M, N, Rizal. A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions. Energies. 2021;14(10):2902.
    [24] A, M, Eltamaly. H, M, H, Farh. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Solar Energy. 2019;177(1):306-316.
    [25] Y, H, Liu. S, C, Huang. J, W, Huang. W, C, Liang. A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Energy Conversion. 2012;27(4):1027-1035.
    [26] J, Ahmed. Z, Salam. A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Applied Energy. 2014;119(15):118-130.
    [27] A, S, Benyoucef. A, Chouder. K, Kara. S, Silvestre. O, A, sahed. Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Applied Soft Computing. 2015;32:38-48.
    [28] M, H, Zafar. T, A, shahrani. N, M, Khan. A, F, Mirza. M, Mansoor. M, U, Qadir. M, I, Khan. R, A, Naqvi. Group Teaching Optimization Algorithm Based MPPT Control of PV Systems under Partial Shading and Complex Partial Shading. Electronics. 2020;9(11):1962.
    [29] D, F, Teshome. C, H, Lee. Y, W, Lin. K, L, Lian. A Modified Firefly Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2017;5(2):661-671.
    [30] E, N, Chaves. J, H, Reis. E, A, A, Coelho. L, C, G, Freitas. J, B, V, Junior. L, C, Freitas. Simulated Annealing ‑ MPPT in Partially Shaded PV Systems. IEEE Latin America Transactions. 2016;14(1):235-241.
    [31] K, Kaced. C, Larbes. N, Ramzan. M, Bounabi. Z, el, Dahmane. Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Solar Energy. 2017;158:490-503.
    [32] B, H, Wijaya. R, K, Subroto. K, L, Lian. N, Hariyanto. A Maximum Power Point Tracking Method Based on a Modified Grasshopper Algorithm Combined with Incremental Conductance. Energies. 2020;13(17):4329.
    [33] K, Ishaque. Z, Salam. A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition. IEEE Transactions on Industrial Electronics. 2013;60(8):3195- 3206.
    [34] J, A, Nelder. R, Mead. A Simplex Method for Function Minimization. The Computer Journal. 1965;7(4):308-313.
    [35] K, Sundarewaran. S, Peddapati. S, Palani. Application of random search method for maximum power point tracking in partially shaded photovoltaic systems. IET Renew. Power Gener., 2014. 8(6):670- 678.
    [36] 王俊仁,「適用於太陽能部分遮蔭情形之兩段式最大功率追蹤技術」,國立台灣科技大學電機工程系碩士學位論文,民國107年 7 月。
    [37] S, C, Wang. H, Y, Pai. G, J, Chen. Y, H, Liu. A Fast and Efficient Maximum Power Tracking Combining Simplified State Estimation With Adaptive Perturb and Observe. IEEE Access., 2020. 8: 155319- 155328.
    [38] B, R, Peng. K, C, Ho. Y, H, Liu. A Novel and Fast MPPT Method Suitable for Both Fast Changing and Partially Shaded Conditions. IEEE Transactions on Industrial Electronics., 2017. 65(4):3240- 3251.
    [39] M, Y, Javed. A, F, Murtaza. Q, Ling. S, Qamar. M, M, Gulzar. A novel MPPT design using generalized pattern search for partial shading. Energy and Buildings., 2016. 133(1):59- 69.
    [40] W, Li. G, Zhang. T, Pan. Z, Zhang. Y, Geng. J, Wang. A Lipschitz Optimization-Based MPPT Algorithm for Photovoltaic System Under Partial Shading Condition. IEEE Access., 2019. 7: 126323- 126333.
    [41] G, Petrone. C, A, R, Paja., G, Spagnuolo, “Photovoltaic Sources Modeling”, JohnWiley & Sons Ltd, 2017

    QR CODE