簡易檢索 / 詳目顯示

研究生: 徐瑋良
Wei-Liang Hsu
論文名稱: 緻密配比設計法應用於鹼激發再生粒料混凝土之性質研究
The Study on the Properties of Alkali Activated Concrete with Recycled Aggregate Designed by Densified Mixture Design Algorithm
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 黃兆龍
Chao-Lung Hwang
林凱隆
Kae-Long Lin
鄭大偉
Ta-Wui Cheng
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 117
中文關鍵詞: 緻密配比設計再生粗粒料再生細粒料鹼激發鹼當量氫氧化鈉莫耳濃度矽鈉比水固比
外文關鍵詞: Densified Mixture Design Algorithm, recycled coarse aggregate, recycled fine aggregate, alkali activated material, alkali equivalent, sodium hydroxide aqueous solution molar concentration, SiO_2/Na_2O ratio ratio, water-solid ratio
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為探討緻密配比之最緻密點粒料堆積下,鹼激發黏結料的結果評估。第一部分以緻密堆積方式以再生細粒料填充天然細粒料及以再生粗粒料填充天然粗粒料繪出單位體積與再生粒料含量關係曲線。再生細粒料比例從30%增加至40%單位體積上升0.03%,從40%增加至50%單位體積下降0.74%,因此當再生細粒料為40%皆有最大單位體積,此時細粒料堆積最為緻密;再生粗粒料比例從30%增加至40%單位體積上升0.05%,從40%增加至50%單位體積下降1.1%,因此得知最為緻密之再生粗細粒料比例為40%。試驗結果顯示,再生粗、細粒料為30%及40%皆有較接近的硬固性質,且再生粗、細粒料比例從30%增加至40%抗壓強度試驗結果下降量小於再生粗、細粒料比例從40%增加至50%。第二部分以不同漿體變數(鹼當量、氫氧化鈉莫耳濃度、矽鈉比、水固比)在再生細粒料為40%下對不同再生粗粒料比例探討各性質試驗,並做微觀分析試驗找出漿體與粒料間之介面過渡區(ITZ)。結果說明提高鹼當量、氫氧化鈉莫耳濃度、矽鈉比,將提高抗壓強度、超音波波速、熱傳導係數,提高水固比則得降低性質試驗結果。


    The main purpose of this study was to evaluate the results of alkali-activated binders under the densest packing of the densest packing. In the first part, the natural fine granules are filled with recycled fine aggregate by dense packing method, and the natural coarse aggregate are filled with recycled coarse aggregate to plot the relationship between unit volume and recycled aggregate content. The proportion of recycled fines aggregate increased from 30% to 40%, and the unit volume increased by 0.03%, from 40% to 50%, and the volume decreased by 0.74%. Therefore, when the recycled fine aggregate are 40%, the maximum unit volume is obtained. The material accumulation is the most dense; the proportion of recycled coarse aggregate increases from 30% to 40%, and the volume increases by 0.05%, from 40% to 50%, and the unit volume decreases by 1.1%. Therefore, the proportion of the most dense recycled coarse aggregate and recycle fine aggregate pellets is 40%. . The test results show that 30% and 40% of the recycled coarse aggregate and recycled fine aggregate have similar hard-solid properties, and the proportion of recycled coarse and fine aggregates increases from 30% to 40%. The ratio of recycled fine aggregate increased from 40% to 50%. The second part explores the properties of different recycled coarse aggregate under different regenerated coarse aggregates with different slurry variables (base equivalent, sodium hydroxide molar concentration, SiO_2/Na_2O ratio, water-solid ratio) and 40%. Microscopic analysis tests find the interface transition zone (ITZ) between the slurry and the pellet. The results show that increasing the alkali equivalent, sodium hydroxide molar concentration, and sodium strontium ratio will increase the compressive strength, ultrasonic wave velocity, heat transfer coefficient, and improve the water-solid ratio to reduce the property test results.

    第一章 緒論 1 1.1研究動機 1 1.2研究目的 1 1.3研究流程 2 第二章 文獻回顧 4 2.1前言 4 2.2黃氏緻密配比設計法 4 2.3再生粒料混凝土 7 2.3.1再生粒料性質 7 2.3.2混凝土新拌性質 7 2.3.3混凝土硬固性質. 8 2.4鹼激發材料 8 2.4.1水淬爐石粉 9 2.4.2飛灰 10 2.5鹼激發鈣矽材料(AAS) 11 2.5.1鹼激發鈣矽材料(AAS)反應機制 12 2.5.2鹼激發鈣矽材料(AAS)之影響因素 13 2.5.3無機聚合物材料(Geopolymer) 14 第三章 試驗計畫 23 3.1試驗內容與流程 23 3.2緻密配比設計 24 3.3試驗材料 26 3.4試驗變數與項目 27 3.5試驗拌合說明 28 3.6試驗方法 29 3.6.1粒料基本性質試驗 29 3.6.2新拌性質試驗 30 3.6.3硬固性質試驗 31 3.6.4微觀分析試驗 33 3.7試驗儀器與設備 34 3.7.1粒料基本性質試驗儀器 34 3.7.2新拌試驗儀器 34 3.7.3硬固性質試驗儀器 34 3.7.4微觀試驗儀器 35 第四章 試驗結果與分析 53 4.1不同再生粒料比例對鹼激發混凝土之新拌及硬固性質 53 4.1.1新拌性質 53 4.1.2抗壓強度 54 4.1.3超音波波速 56 4.1.4熱傳導係數 57 4.1.5長度變化量 58 4.1.6吸水率 60 4.1.7表面電阻率 61 4.2不同漿體變數對不同再生粗粒料含量之影響 63 4.2.1新拌性質 63 4.2.2抗壓強度 64 4.2.3超音波波速 66 4.2.4熱傳導係數 67 4.2.5長度變化量 68 4.2.6吸水率 69 4.2.7表面電阻率 71 4.2.8微觀分析 72 第五章 結論與建議 112 5.1結論 112 5.2建議 112 參考文獻 113 表目錄 表2-1文獻回顧重點整理 15 表2-2水淬爐石粉物理性質限制 19 表3-1再生粗、細粒料填充比例與單位體積 37 表3-2天然粗、細粒料基本性質 37 表3-3再生粗、細粒料基本性質 37 表3-4水淬爐石與F級飛灰性質 38 表3-5 3號水玻璃化學成分表 38 表3-6各試驗階段之試驗項目 39 表3-7最佳飛灰及細粒料含量 39 表3-8鹼激發再生混凝土試驗配比表(單位:kg/m3) 40 表4-1不同再生粒料比例鹼激發再生混凝土新拌及硬固性質試驗結果 74 表4-2不同再生粒料比例鹼激發再生混凝土硬固性質試驗結果 75 表4-3不同漿體變數對不同再生粗粒料含量硬固性質試驗結果 76 表4-4不同漿體變數對不同再生粗粒料含量長度變化量試驗結果 77   圖目錄 圖1-1研究流程圖 3 表2-1文獻回顧重點整理 15 表2-2水淬爐石粉物理性質限制 19 圖2-1再生粒料取代量與坍流度關係圖 (SCC0G、25G、50G、75G、100G:再生粒料取代量0%、25%、50%、75%、100%) [15] 19 圖2-2再生粒料取代量與抗壓強度關係圖 [17] 20 圖2-3介面過渡區(ITZ) ((a)水泥漿和原始骨材間介面過渡區;(b)水泥漿體及鹼激發漿體間介面過渡區) [19] 20 圖2-4鹼激發混凝土之製作流程 21 圖2-5卜作嵐材料之CaO-SiO2-Al2O3三相圖 21 圖2-6矽鋁酸鹽玻璃質溶出示意圖 [41] 22 圖2-7 Si-O-Al-O之三維四面體結構 [52] 22 圖3-1細粒料單位體積與再生細粒料含量之關係圖 42 圖3-2粗粒料總體積與再生粗粒料含量之關係圖 42 圖3-3天然粗粒料 43 圖3-4天然細粒料 43 圖3-5再生粗粒料 44 圖3-6再生細粒料 44 圖3-7水淬爐石粉 45 圖3-8飛灰 45 圖3-9氫氧化鈉水溶液 46 圖3-10矽酸鈉水溶液(3號水玻璃) 46 圖3-11四硼酸鈉 47 圖3-12粗粒料比重及吸水率試驗相關設備 47 圖3-13細粒料比重及吸水率試驗相關設備 48 圖3-14粒料容積密度試驗儀器設備 48 圖3-15 200頓抗壓試驗機 49 圖3-16超音波波速量測儀 49 圖3-17恆溫恆濕室 50 圖3-18熱傳導係數量測儀 50 圖3-19長度變化量測儀 51 圖3-20表面電阻儀 51 圖3-21掃描式電子顯微鏡設備 52 圖4-1不同再生粗粒料比例隨不同再生細粒料變化之坍度結果 79 圖4-2不同再生粗粒料比例隨不同再生細粒料變化之坍流度結果 79 圖4-3不同再生細粒料含量與抗壓強度關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 80 圖4-4不同再生粗粒料含量與抗壓強度關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 81 圖4-5不同再生細粒料含量與超音波波速關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 82 圖4-6不同再生粗粒料含量與超音波波速關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 83 圖4-7不同再生細粒料含量與熱傳導係數關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 84 圖4-8不同再生粗粒料含量與熱傳導係數關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 85 圖4-9不同再生細粒料含量長度變化量與齡期關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 86 圖4-10不同再生粗粒料含量長度變化量與齡期關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 87 圖4-11不同再生細粒料含量與吸水率關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 88 圖4-12不同再生粗粒料含量與吸水率關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 89 圖4-13不同再生細粒料含量與表面電阻率關係圖 (再生粗粒料含量:(a)30%RCA;(b)40%RCA;(c)50%RCA) 90 圖4-14不同再生粗粒料含量與表面電阻率關係圖 (再生細粒料含量:(a)30%RFA;(b)40%RFA;(c)50%RFA) 91 圖4-15鹼當量變化與坍度試驗結果 92 圖4-16鹼當量變化與坍流度試驗結果 92 圖4-17氫氧化鈉莫耳濃度變化與坍度試驗結果 93 圖4-18氫氧化鈉莫耳濃度變化與坍流度試驗結果 93 圖4-19矽鈉比變化與坍度試驗結果 94 圖4-20矽鈉比變化與坍流度試驗結果 94 圖4-21水固比變化與坍度試驗結果 95 圖4-22水固比變化與坍流度試驗結果 95 圖4-23 7天抗壓強度與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4; (d)水固比0.4、0.5、0.6)) 96 圖4-24 28天抗壓強度與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4; (d)水固比0.4、0.5、0.6)) 97 圖4-25 28天超音波波速與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4; (d)水固比0.4、0.5、0.6)) 98 圖4-26 28天熱傳導係數與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4;(d)水固比0.4、0.5、0.6)) 99 圖4-27 28天不同鹼當量長度變化量與齡期關係圖 ((a)30%RCA;(b)40%RCA;(c)50%RCA)) 100 圖4-28 28天不同氫氧化鈉莫耳濃度長度變化量與齡期關係圖 ((a)30%RCA;(b)40%RCA;(c)50%RCA)) 101 圖4-29 28天不同矽鈉比長度變化量與齡期關係圖 ((a)30%RCA;(b)40%RCA;(c)50%RCA)) 102 圖4-30 28天不同水固比長度變化量與齡期關係圖 ((a)30%RCA;(b)40%RCA;(c)50%RCA)) 103 圖4-31 28天吸水率與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4;(d)水固比0.4、0.5、0.6)) 104 圖4-32 28天表面電阻率與不同再生粗粒料比例關係圖 ((a)鹼當量4、6、8;(b)氫氧化鈉莫耳濃度4M、8M、12M;(c)矽鈉比0.6、1、1.4;(d)水固比0.4、0.5、0.6)) 105 圖4-33控制組(6%8M1S0.5L)56天齡期顯微鏡照片((a)500倍;(b)1500倍) 106 圖4-34鹼當量4%之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 106 圖4-35鹼當量8%之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 107 圖4-36氫氧化鈉莫耳濃度4M之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 107 圖4-37氫氧化鈉莫耳濃度12M之56天齡期顯微鏡照片((a)500倍; 108 圖4-38矽鈉比為0.6之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 108 圖4-39矽鈉比為1.4之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 109 圖4-40水固比為0.4之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 109 圖4-41水固比為0.6之56天齡期顯微鏡照片((a)500倍;(b)1500倍) 110 圖4-42鹼激發漿體及粒料介面過渡區顯微鏡照片(a)顯微鏡照片;(b)EDS選取範圍1(spectrum 1);(c) EDS選取範圍2(spectrum 2);(d)EDS選取範圍3(spectrum 3) 111

    Marie, I., H. Quiasrawi, “Closed-loop recycling of recycled concrete aggregates”, Journal of Cleaner Production, vol.37, pp.243-248, 2012.
    [2]Hardjito, D., B. V. Rangan, “Development and properties of low calcium fly ash based geolymer concrete”, Research report GC-1, Faculty of Engineering, Curtins University of Technology, Perth, 2005.
    [3]Lawrence, D., “The Production of Low-Energy Cements, Lea’s Chemistry of Cement and Concrete, fourth ed., Butterworth-Heinemann”, Oxford, 2003.
    [4]Hajimohammadi, John Ailar L. Provis Jannie S. J. van Deventer, “One-Part geoplolymer mixes from geothermal silica and sodium aluminate, Industrial and Engineering”, Chemistry Research, vol. 47, pp. 9396-9405.
    [5]黃兆龍,混凝土性質與行為,詹氏書局,民國92年。
    [6]The Freedonia Group. World Construction Aggregates to 2015. Industry Study 2838, Cleveland, USA. 2012:334p.
    [7]Thomas, J., N. NazeerThaickavil, P.M.Wilson, “Strength and durability of concrete containing recycled concrete aggregates”, Journal of Building Engineering,
    vol.19, pp. 349-365, 2018.
    [8]Geng, Y., M. Zhao, H. Yang, Y. Wang, “Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete”, Cement and Concrete Composites, vol. 103, pp.303-317, 2019.
    [9]Akbarnezhad, A., K. C. G. Ong, M. H. Zhang, C. T. Tam, T. W. J. Foo, “Microwave-assisted beneficiation of recycled concrete aggregates”, Construction and Building Materials, vol. 25, pp. 3469–3479, 2011.
    [10]Song, S., K. Chi, S. Poon, D. Chan, “Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete”, Materials and Structures, vol. 41, pp.1191-1201, 2008.
    [11]Thomas, J., N. NazeerThaickavil, P. M. Wilson, “Strength and durability of concrete containing recycled concrete aggregates”, Journal of Building Engineering, vol. 19, pp. 349-365, 2018.
    [12]Hilal, E., P. Kianmehr, S. Zouaoui, “Properties of pervious concrete incorporating recycled concrete aggregates and slag”, Construction and Building Materials, vol. 212, pp. 164–175, 2019.
    [13]Shi, S., F. G. Collins, X. L. Zhao, Q. Y. Wang, “Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete”, Journal of Hazardous Materials, vol. 237-238, pp. 20-29, 2012.
    [14]Poon, S., Z. H. Shui, L. Lam, “Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates”, Construction and Building Materials, vol. 18, pp.461–468, 2004.
    [15]Vivian, T., X. F. Gao, C. M. Tam, “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach”, Cement and Concrete Research, vol. 35, pp. 1195-1203, 2005.
    [16]İlker, B., T. S. Şengel, “Properties of concrete produced with waste concrete aggregate”, Cement and Concrete Research, vol.34, pp. 1307-1312, 2004.
    [17]Nourredine, A., H. Meftah, H. Amara, O. Kebaïli, L. Berredjem, “Valorization of recycled materials in development of self-compacting concrete: Mixing recycled concrete aggregates – Windshield waste glass aggregates”, Construction and Building Materials, vol. 209, pp. 364-376, 2019.
    [18]Gonçalo, D., M. Bravo, J. Brito, J. Nobre, “Mechanical performance of shotcrete produced with recycled coarse aggregates from concrete”, Construction and Building Materials, vol. 210, pp. 696-708, 2019.
    [19]Buck, D.,“ Recycle Concrete as a source of aggregate”, The American Concrete Institute, vol. 74, pp. 212-219, 1977.
    [20]Thomas, C., J. Setién, J. A. Polanco, J. de Brito, F. Fiol, “Micro- and macro-porosity of dry- and saturated-state recycled aggregate concrete”, Cleaner Production, vol. 211, pp. 932-940, 2019.
    [21]Limbach, M., “Construction and Demplition Waste Recycling for Reuse as Aggregate in Concrete Production”, Kinston University, London, 2003.
    [22]Purdon, O., “The action of alkalis on blast furnace slag”, Journal of the Society of Chemical Industry, vol. 59, pp.191-202, 1940.
    [23]Davidovits, J., “Synthesis of new high temperature geo-polymers for reinforced plastics/composites”, Society of Plastic Engineers, pp.151-154,1979.
    [24]Wastiels, J., X. Wu, S. Faignet, G. Patfoort,“Mineral polymer based on fly ash”, Proceedings of the 9th International Conference on Solid Waste Management, Widener University, Philadephia, PA, 1993.
    [25]Palomo, A., M. W. Grutzeck, M. T. Blanco, “Alkali-activited fly ash:A cement for the future”, Cement and Concrete Reasearch, vol. 29, pp. 1323-1329, 1999.
    [26]Jiao, Z., Y. Wang, W. Zheng, W. Huang, “Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste”, Construction and Building Materials, vol. 179, pp. 11-24, 2018.
    [27]Amer, Hassan., Mohammed Arif, M. Shariqc, “Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure”, Journal of Cleaner Production, vol. 223, pp. 704-728, 2019.
    [28]Roy, M., G.M. Idorn, “Hydration, structure, and properties of blast furnace slag cements, mortar, and concret”, Journal Proceedings, vol. 79, pp. 444-457, 1982.
    [29]Alain, B., V. M. Malhotra, “High-Volume Fly Ash System: Concrete Solution for Sustainable Developement”, ACI Materials Jurnal, vol. 97, pp.41-48, 2000.
    [30]Yoon, S., J. P. Won, S.K. Woo, Y. C. Song, “Enhanced durability performance of fly ash concrete for concrete faced rockfill dam application”, Cement and Concrete Research, vol. 32, pp. 23-30, 2002.
    [31]黃兆龍,湛淵源,林治強,「飛灰燒失量對高流動化高強度混凝土工程性質之影響」,中國土木水利工程學刊,第12卷,第2期,第217~223頁,民國89年。
    [32]Daimond, S., “Intimate association of coal particles and inorganic spheres in fly ash”, Cem. Concr. Res., vol. 12, pp.405-407, 1982.
    [33]Rossuw, E., J. Kruger, “Review of specifications for additions for use in concrete”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ,vol. 1,pp. 71-86, 1983.
    [34]Sturrup, R., R. D. Hooton, T. G. Clendenning, “Durability of fly ash concrete”, Slag and other Mineral By-products in Concrete, vol. 79,pp. 71~86, 1983.
    [35]Ohga, H., S. Nagataki, “Effect of fly ash on alkali-aggregate reaction in marine environment”,Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, vol. 132,pp. 577~590, 1992.
    [36]林平全,飛灰混凝土,科技圖書股份有限公司,民國78年。
    [37]Xu, H., J. S. J. V. Deventer, “The geopolymerisation of alumino-silicate minerals”, Construction and Building Materials, vol. 147, pp. 398-406, 2017.
    [38]Shi, C., R. L. Day, “A calorimetric study of early hydration of alkali-slag cement”, Cement and Concrete Research, vol. 25, pp.1333-1346, 1995.
    [39]Shi, C., Robert L. Day, “Some factors affecting early hydration of alkali-slag cements”, Cement and Concrete Research, vol. 26, pp.439-447, 1996.
    [40] Zhou, H., W. Xuequan, X. Zhongzi, T. Mingshu, “Kinetic study on hydration of alkali-activited slag”, Cement and Concrete Research, vol. 23, pp. 1253-1258, 1993.
    [41]Duxson, P., J. L. Provis, “Designing precursors for geoploymer cements”, Journal of the American Ceramic Society, vol. 91, pp. 3864-3869, 2008.
    [42]Wang, S., K. L.Scrivener, P. L. Pratt, “Factors affecting the strength of alkali-activited slag”,.Cement and concrete Research, vol.24, pp.1033-1043, 1994.
    [43]Danial, N., A. H. Pakshir, H. Ghayour, “The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars”, Construction and Building Materials, vol. 190, pp. 108-119, 2018.
    [44]Dali, B., Q. Ma, M. Soutsos, “Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity”, Construction and Building Materials, vol. 190, pp. 191-199, 2018.
    [45]Song, S., D. Sohn, H. M. Jennings, T. O. Mason, “Hydration of alkali-activated ground granulated blast furnace slag”, Journal of Materials Science, vol.35, pp. 249-257, 2000.
    [46]Kostas, K., D. Zaharaki, V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers”, Journal of Hazardous Materials, vol. 160, pp.760-768, 2009.
    [47]Thomasa, J., B. S. Gebregziabiherb, A. Giffinc, S. Peethamparanb,“ Micromechanical properties of alkali-activated slag cement binders”, Cement and Concrete Composites, vol. 90, pp.241-256, 2018.
    [48]Aliabdo, A., A. Elmoaty, M. A. Elmoaty,M. A. Emam,“Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete”, Construction and Building Materials, vol. 190, pp. 1251.
    [49]Shia, Z., C. Shi, Shu Wana, Z. Zhang, “Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars”, Cement and Concrete Research, vol. 111, pp. 104-115, 2018.
    [50]Li, N., C. Shi, Z. Zhang, “A mixture proportioning method for the development of performance-based lkali-activated slag-based concrete”, Cement and Concrete Composites, vol. 93,pp. 163-147, 2018.
    [51]陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,營建工程系,國立台灣科技大學,台北市,2010。
    [52]Pacheco-Torgal, F., J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, “Handbook of Alkali-activated Cements”, Mortars and Concretes, Woodhead Publishing, Cambridge, 2012.
    [53]Davidovits, J., “Properties of Geopolymer Cements, First International Conference on Alkaline Cements and Concretes”, Scientific Research Institute on Binders and Materials, pp. 131-149, 1994.
    [54]柯翰勝,低二氧化碳排放的無機聚合綠色水泥開發研究,資源工程研究所,國立臺北科技大學,台北市,2011。

    無法下載圖示 全文公開日期 2025/02/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE