簡易檢索 / 詳目顯示

研究生: 陳柏勳
Po-Hsun Chen
論文名稱: 碳纖維複合材料摩擦與磨耗行為之研究
The Study on Friction and Wear Behavior of Carbon Fabric Composites
指導教授: 吳昌謀
Cheng-Mou Wu
口試委員: 邱顯堂
陳錦江
安大中
陳榮宏
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: 短紗碳纖維織物混成複合材料含浸率表面形貌摩擦與磨耗
外文關鍵詞: Staple carbon fiber fabric, Hybrid composites, Impregnation ratio, Surface topography, Friction and wear
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用改良式薄膜疊層法 (Modified film stacking method) 配合熱壓製程,成功製備出部分樹脂含浸量 (Partially-impregnated) 與全樹脂含浸量 (Fully-impregnated) 的熱塑型短紗碳纖維補強聚碳酸酯樹脂(Polycarbonate, PC) 複合材料及熱固型短紗碳纖維補強環氧樹脂(Epoxy, EP) 複合材料。四種複合材料分別記名為: PC-P、PC-F、EP-P、EP-F。利用盤對盤 (Disk-on-Disk) 的接觸模式於乾式環境下進行摩擦與磨耗測試。第一部分:探討不同表面形貌與樹脂類型對於磨潤性質的影響。第二部分:針對PC-P與EP-F複合材料添加氮化鋁 (Aluminum nitride, AlN) 粉體至表面,探討粉體對於動態磨潤性質的影響外,並以動靜摩擦測試探討各材料之基礎摩擦特性。

    第一部分結果: Alambeta測試得到,不同樹脂含浸量與形貌結構間,以EP-P複合材料熱性質最佳。磨潤實驗結果顯示,動態摩擦係數首要影響因素為高分子特性,次要因素為 S_mr1 以及 S_k 等表面粗糙度參數。四種複合材料的動態摩擦係數皆隨著轉速及壓力的增加而逐漸下降,且其與材料表面形貌、介面溫度有關聯。而磨耗率主要影響因素為樹脂含浸量。部分樹脂含浸量 (Partially-impregnated) 複合材料維持低磨耗率,而全樹脂含浸量 (Fully-impregnated) 複合材料的磨耗率隨著轉速與壓力提升而明顯增加。經由電子顯微鏡 (SEM) 觀察表面破壞形貌得知PC基複合材料主要為刮磨磨耗 (Abrasive wear)、黏著磨耗 (Adhesive wear) 和疲勞磨耗 (Fatigue wear) ;EP基複合材料主要為刮磨磨耗 (Abrasive wear) 和疲勞磨耗 (Fatigue wear) 。

    第二部分:添加AlN結果顯示,PC-P-5%、PC-P-15% 複合材料的動態摩擦係數皆比PC-P低,其為複合材料型貌上的改變為主要影響。然而透過添加不同粉體含量 (5wt %、15wt %) ,後者動態摩擦係數提升約53.3 %、磨耗率下降約53.9 %。EP-F-AlN系列複合材料對於動態摩擦係數並無顯著差異,其磨耗率增加約84.1 %。

    結果顯示,部分樹脂含浸量 (Partially-impregnated) 複合材料於本實驗的測試條件下依舊擁有較優異的磨潤特性,其中以PC-P複合材料最為優異,其具有高摩擦、低摩耗之特性,可望與AlN粉體複合並應用於摩擦材料之潛能。


    In this study, staple carbon fiber fabric reinforced polycarbonate (PC) - and epoxy (EP) - based composites with partially-impregnated and fully-impregnated resin were fabricated by modified film stacking method and hot pressing process. Four kinds of composites are called PC-P、PC-F、EP-P、EP-F, respectively. The friction and wear test on composites were investigated under the condition of unlubricated sliding with a disk-on-disk wear test machine. First part: the effect of the different topography and resin type are investigated. Second part: By adding the AlN particle into the surface PC-P and EP-F composite to discuss the effect on the tribology property, also discussed the basic frictional property of all material by Kinetic/Static friction test.

    In the result of first part: The result of Alambeta test indicated the EP-P has the best thermal property between the difference of the impregnation ratio and surface topography. The tribology experimental results showed that the intrinsic property of polymer is the primary influence factor for dynamic friction coefficient, next in importance is peak material portion (Smr1) values, once more is core height (Sk) values. The dynamic friction coefficient for four materials decreased with increasing the sliding speed/applied pressure and depend on surface topography and temperature at the interface. However, the primary influence factor for the specific wear rate is the resin impregnation content. The partially-impregnated composites maintain a low specific wear rate, whereas that of fully-impregnated composites substantially increase with increasing the sliding speed/applied pressure. Scanning electron microscopy (SEM) observations of the worn surfaces revealed that the main wear mechanisms are abrasive, adhesive and fatigue wear for of PC-based composites, but are abrasive and fatigue wear for EP-based composites.

    The result of second part: The dynamic friction coefficient of PC-P-AlN series composites are lower than the PC-P due to the main change of surface topography of composite. By adding the varied content of AlN particle (5wt %、15wt %), the latter one enhance 53.3 % of the COF and decrease 53.9 % on wear rate. The dynamic friction coefficients of EP-F-AlN series composite are no significant varied, and the wear rate increase 84.1 %.

    The results proved that partially-impregnated composites exhibited better tribology properties under severe conditions, especially PC-P, which has high friction and low specific wear rate characteristic and potentially be combined with AlN particle and be used as friction material in the application.

    摘要 i Abstract iii 表目錄 viii 圖目錄 ix 名詞與符號表 xiii 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 4 第二章: 文獻回顧與原理 5 2.1碳纖維材料性質 5 2.2短纖紡紗法 7 2.3摩潤學理論 11 2.3.1高分子材料磨潤行為 11 2.3.2高分子材料磨耗機制 12 2.4影響複合材料磨潤行為之因素 15 第三章: 材料與實驗 24 3.1材料 24 3.2實驗流程表 26 3.3材料製備 27 3.4實驗設備與分析 29 3.4.1材料物理性質 29 3.4.2材料熱性質分析 29 3.4.3材料表面特性分析 33 3.5動態磨潤測試與設定 35 3.6 動靜摩擦測試 41 第四章: 結果與討論 43 4.1樹脂含浸率對Alambeta熱性質之影響 43 4.2表面特性分析結果對磨潤行為之影響 45 4.2.1表面特性分析 45 4.2.2 探討表面形貌與磨潤行為之關聯 47 4.3不同轉速條件下對動態摩擦係數與磨耗率的影響 49 4.4不同壓力條件下對動態摩擦係數與磨耗率的影響 54 4.5 SEM之表面破壞分析 57 4.5.1部分含浸複合材料表面形貌破壞機制之影響 57 4.5.2全含浸複合材料表面形貌破壞機制之影響 60 4.6 AlN系列複合材料之表面分析 64 4.7 探討AlN粉體對於複合材料之磨潤行為影響 67 4.8 探討碳纖維複合材料之動、靜摩擦係數 69 第五章: 結論 70 參考文獻 71

    1. Marklund, P., Mäki, R., Larsson, R., Höglund, E., Khonsari, M. M., & Jang, J, Thermal influence on torque transfer of wet clutches in limited slip differential applications. Tribology international, 2007. 40(5): p. 876-884.
    2. Huang, S., Bao, J., Yin, Y., Ge, S., & Liu, T, A Review of Brake Friction Materials: Development, Tribological Performance and Failure Prediction. Science of Advanced Materials, 2019. 11(5): p. 613-628.
    3. Ahmadijokani, F., Alaei, Y., Shojaei, A., Arjmand, M., & Yan, N., Frictional behavior of resin-based brake composites: Effect of carbon fibre reinforcement. Wear, 2019. 420: p. 108-115.
    4. Ahmadijokani, F., Shojaei, A., Arjmand, M., Alaei, Y., & Yan, N, Effect of short carbon fiber on thermal, mechanical and tribological behavior of phenolic-based brake friction materials. Composites Part B: Engineering, 2019. 168: p. 98-105.
    5. Rasheva, Z., Zhang, G., & Burkhart, T ,A correlation between the tribological and mechanical properties of short carbon fibers reinforced PEEK materials with different fiber orientations. Tribology International, 2010. 43(8): p. 1430-1437.
    6. Mittal, G., & Rhee, K. Y, Hierarchical structures of CNT@ basalt fabric for tribological and electrical applications: Impact of growth temperature and time during synthesis. Composites Part A: Applied Science and Manufacturing, 2018. 115: p. 8-21.
    7. Aranganathan, N., Mahale, V., & Bijwe, J., Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 2016. 354: p. 69-77.
    8. Subramanian, K., Nagarajan, R., De Baets, P., Subramaniam, S., Thangiah, W., & Sukumaran, J., Eco-friendly mono-layered PTFE blended polymer composites for dry sliding tribo-systems. Tribology International, 2016. 102: p. 569-579.
    9. Luo, W., Liu, Q., Li, Y., Zhou, S., Zou, H., & Liang, M, Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber. Composites Part B: Engineering, 2016. 91: p. 579-588.
    10. Omrani, E., Barari, B., Moghadam, A. D., Rohatgi, P. K., & Pillai, K. M, Mechanical and tribological properties of self-lubricating bio-based carbon-fabric epoxy composites made using liquid composite molding. Tribology International, 2015. 92: p. 222-232.
    11. Wenbin, L., Jianfeng, H., Jie, F., Liyun, C., & Chunyan, Y., Mechanical and wet tribological properties of carbon fabric/phenolic composites with different weave filaments counts. Applied surface science, 2015. 353: p. 1223-1233.
    12. Kumar, S., & Panneerselvam, K, Two-body abrasive wear behavior of nylon 6 and glass fiber reinforced (GFR) nylon 6 composite. Procedia Technology, 2016. 25: p. 1129-1136.
    13. Zhao, Z.-K., Du, S. S., Li, F., Xiao, H. M., Li, Y. Q., Zhang, W. G., ... & Fu, S. Y, Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites: A comparative study. Composites Communications, 2018. 8: p. 1-6.
    14. Suresha, B., & Kumar, K. N. S, Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites. Materials & Design, 2009. 30(6): p. 2056-2060.
    15. Wang, B., Fu, Q., Yin, T., Li, H., Qi, L., & Fu, Y., Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites. Carbon, 2018. 139: p. 45-51.
    16. Fei, J., Wang, H. K., Huang, J. F., Zeng, X. R., & Luo, W.., Effects of carbon fiber length on the tribological properties of paper-based friction materials. Tribology International, 2014. 72: p. 179-186.
    17. Lin, L., & Schlarb, A. K., The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants. Tribology International, 2018. 119: p. 404-410.
    18. Vishwanath, B., Verma, A. P., & Rao, C. K., Effect of fabric geometry on friction and wear of glass-fibre-reinforced composites. Wear, 1991. 145(2): p. 315-327.
    19. Sharma, M., Bijwe, J., & Mitschang, P., Abrasive wear studies on composites of PEEK and PES with modified surface of carbon fabric. Tribology International, 2011. 44(2): p. 81-91.
    20. Fei, J., Li, H. J., Huang, J. F., & Fu, Y. W., Study on the friction and wear performance of carbon fabric/phenolic composites under oil lubricated conditions. Tribology International, 2012. 56: p. 30-37.
    21. Newcomb, B.A., Processing, structure, and properties of carbon fibers. Composites Part A: Applied Science and Manufacturing, 2016. 91: p. 262-282.
    22. Kukureka, S., Hooke, C. J., Rao, M., Liao, P., & Chen, Y. K., The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling–sliding contact. Tribology International, 1999. 32(2): p. 107-116.
    23. Guo, L., Zhang, G., Wang, D., Zhao, F., Wang, T., & Wang, Q, Significance of combined functional nanoparticles for enhancing tribological performance of PEEK reinforced with carbon fibers. Composites Part A: Applied Science and Manufacturing, 2017. 102: p. 400-413.
    24. Bijwe, J., Gupta, M. K., Parida, T., & Trivedi, P. , Design and development of advanced polymer composites as high performance tribo-materials based on blends of PEK and ABPBI. Wear, 2015. 342: p. 65-76.
    25. Mergler, Y., Van Kampen, R. J., Nauta, W. J., Schaake, R. P., Raas, B., Van Griensven, J. G. H., & Meesters, C. J. M, Influence of yield strength and toughness on friction and wear of polycarbonate. Wear, 2005. 258(5-6): p. 915-923.
    26. Lee, J. H., Xu, G. H., & Liang, H, Experimental and numerical analysis of friction and wear behavior of polycarbonate. Wear, 2001. 251(1-12): p. 1541-1556.
    27. Zhou, X. H., Sun, Y. S., & Wang, W. S. , Influences of carbon fabric/epoxy composites fabrication process on its friction and wear properties. Journal of Materials Processing Technology, 2009. 209(9): p. 4553-4557.
    28. Suresha, B., Ramesh, B. N., Subbaya, K. M., Kumar, B. R., & Chandramohan, G.., Influence of graphite filler on two-body abrasive wear behaviour of carbon fabric reinforced epoxy composites. Materials & Design, 2010. 31(4): p. 1833-1841.
    29. Lee, H. G., & Hwang, H. Y. , Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites. Wear, 2006. 261(3-4): p. 453-459.
    30. Bijwe, J., Kumar, M., Gurunath, P. V., & Desplanques, Y, Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear, 2008. 265(5-6): p. 699-712.
    31. Kumar, M., & Bijwe, J., Non-asbestos organic (NAO) friction composites: Role of copper; its shape and amount. Wear, 2011. 270(3): p. 269-280.
    32. Kumaresan, K., Chandramohan, G., Senthilkumar, M., Suresha, B., & Indran, S., Dry Sliding Wear Behaviour of Carbon Fabric-Reinforced Epoxy Composite with and without Silicon Carbide. Composite Interfaces, 2012. 18(6): p. 509-526.
    33. Zhang, Z.-Z., Su, F. H., Wang, K., Jiang, W., Men, X. H., & Liu, W. M., Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles. Materials Science and Engineering: A, 2005. 404(1-2): p. 251-258.
    34. Yang, M., Zhang, Z., Yuan, J., Guo, F., Men, X., & Liu, W,Synergistic effects of AlB2 and fluorinated graphite on the mechanical and tribological properties of hybrid fabric composites. Composites Science and Technology, 2017,143:p.75-81.
    35. Goyal, R. K., Tiwari, A. N., & Negi, Y. S., High performance PEEK/AlN micro- and nanocomposites for tribological applications. Journal of Applied Polymer Science, 2012: p.4621-4619
    36. Ompusunggu, A. P., Sas, P., & Van Brussel, H. , Influence of adhesive wear and thermal degradation on the frictional characteristics of paper-based friction materials: A comparative study. ISRN Tribology, 2013.
    37. Wenbin, L., Jianfeng, H., Jie, F., Zhenhai, L., Liyun, C., & Chunyan, Y, Effect of aramid pulp on improving mechanical and wet tribological properties of carbon fabric/phenolic composites. Tribology International, 2016. 104: p. 237-246.
    38. Jie, F., Wenbin, L., Jianfeng, H., Liyun, C., & Chunyan, Y, Variation of the tribological properties of carbon fabric composites in their whole service life. Tribology International, 2016. 99: p. 29-37.
    39. Johnson, D.J., Structure-property relationships in carbon fibres. Journal of Physics D: Applied Physics, 1987. 20(3): p. 286-291.
    40. Hasan, M. M. B., Nitsche, S., Abdkader, A., & Cherif, C., Carbon fibre reinforced thermoplastic composites developed from innovative hybrid yarn structures consisting of staple carbon fibres and polyamide 6 fibres. Composites Science and Technology, 2018, p 167: 379-387.
    41. Hengstermann, M., Hasan, M. M. B., Abdkader, A., & Cherif, C.,Influence of fibre length and preparation on mechanical properties of carbon fibre/polyamide 6 hybrid yarns and composites. Fibres & Textiles in Eastern Europe, 2016.5(119),p 55-62.
    42. Hasan, M. M. B., Nitsche, S., Abdkader, A., & Cherif, C. Carbon fibre reinforced thermoplastic composites developed from innovative hybrid yarn structures consisting of staple carbon fibres and polyamide 6 fibres. Composites Science and Technology, 2018.167:p.379-387.
    43. Oxtoby, E, Spun yarn technology. Butterworth-Heinemann, 2013.
    44. Jacobsen, G., & Schimpf, W. C., Process Development and Characterization of Stretch Broken Carbon Fiber Materials. In SAMPE'09 Spring Symposium Technical Conference Proceedings, 2009:p. 18-21.
    45. Su, C. I., & Lai, P. T., Evaluating the unevenness of stretch-broken tow in tow-to-yarn direct spinning. Fibers and Polymers, 2010.11(4): p. 648-653.
    46. Su, C. I., Huang, L. Y., & Cheng, S. P. , Application of Stretch-breaking Force Analysis on Optimum Drafting Conditions in Tow-to-yarn Direct Spinning. Textile Research Journal, 2008,78(10):p. 896-902
    47. Lafaye, S., Gauthier, C., & Schirrer, R, Analysis of the apparent friction of polymeric surfaces. Journal of materials science, 2006. 41(19): p. 6441-6452.
    48. Dhieb, H., Buijnsters, J. G., Eddoumy, F., & Celis, J. P., Surface damage of unidirectional carbon fiber reinforced epoxy composites under reciprocating sliding in ambient air. Composites science and technology, 2011. 71(15): p. 1769-1776.
    49. Rattan, R., Bijwe, J., & Fahim, M., Optimization of weave of carbon fabric for best combination of strength and tribo-performance of polyetherimide composites in adhesive wear mode. Wear, 2008. 264(1-2): p. 96-105.
    50. Qi, H., Zhang, G., Wetzel, B., Österle, W., Wang, T., & Wang, Q., Exploring the influence of counterpart materials on tribological behaviors of epoxy composites. Tribology International, 2016. 103: p. 566-573.
    51. Lampman, S., Characterization and failure analysis of plastics. 2003: Asm International.
    52. Wieleba, W., The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear, 2002. 252(9-10): p. 719-729.
    53. Tomescu, L., Rı̂pă, M., Vasilescu, E., & Georgescu, C. , Surface profiles of composites with PTFE matrix. Journal of materials processing technology, 2003. 143: p. 384-389.
    54. Dong, W. P., Sullivan, P. J., & Stout, K. J., Comprehensive study of parameters for characterising three-dimensional surface topography: III: Parameters for characterising amplitude and some functional properties. Wear, 1994. 178(1-2): p. 29-43.
    55. Deltombe, R., Kubiak, K. J., & Bigerelle, M., How to select the most relevant 3D roughness parameters of a surface. Scanning: The Journal of Scanning Microscopies, 2014. 36(1): p. 150-160.
    56. Las Casas, E., B., Bastos, F. S., Godoy, G. C. D., & Buono, V. T. L., Enamel wear and surface roughness characterization using 3D profilometry. Tribology International, 2008. 41(12): p. 1232-1236.
    57. Pirvu, C., Maftei, L., Georgescu, C., & Deleanu, L., Maps of 3D parameters for worn surfaces of composites PA and glass beads sliding on steel. Industrial Lubrication and Tribology, 2017. 69(1): p. 42-51.
    58. Abbott, E.J.,& Firestone, F.A, Specifying surface quality: a method based on accurate measurement and comparison. Spie Milestone Series MS, 1995. 107: p. 63-63.
    59. 王柏凱,雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎形維度和承載比分析. 2013.
    60. Franco, L.A.,& Sinatora,A, 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precision Engineering, 2015. 40: p. 106-111
    61. Bowden, F. P., & Tabor, D, The friction and lubrication of solids. Vol. 1. 2001: Oxford university press.
    62. Zhu, S., & Huang, P., Influence mechanism of morphological parameters on tribological behaviors based on bearing ratio curve. Tribology International, 2017. 109: p. 10-18.
    63. Frydrych, I., Dziworska, G., & Bilska, J., Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres. Fibres and Textiles in Eastern Europe, 2002. 10(4): p. 40-44.
    64. Jamshaid, H., & Mishra, R., Thermomechanical characteristics of basalt hybrid and nonhybrid woven fabric–reinforced epoxy composites. Polymer Composites, 2016. 37(10): p. 2982-2994.
    65. Ost, W., De Baets, P., & Degrieck, J., The tribological behaviour of paper friction plates for wet clutch application investigated on SAE# II and pin-on-disk test rigs. Wear, 2001. 249(5-6): p. 361-371.
    66. Stanković, S. B., Popović, D., & Poparić, G. B. , Thermal properties of textile fabrics made of natural and regenerated cellulose fibers. Polymer Testing, 2008. 27(1): p. 41-48.
    67. Eriksson, M., & Jacobson,S.,Tribological surfaces of organic brake pads. Tribology international, 2000. 33(12): p. 817-827.

    無法下載圖示 全文公開日期 2025/02/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE