簡易檢索 / 詳目顯示

研究生: 林純鈞
Chuen-Jiun Lin
論文名稱: 可見光至近紅外波段高光譜儀之光學元件配置容差分析
Tolerance Analysis of Optical Component Configuration for a Hyperspectral Imaging System in Visible and Near Infrared Band
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 154
中文關鍵詞: 高光譜儀影像遙測MTF斑點解析度前級光學系統光譜解析度容差
外文關鍵詞: Hyperspectral imaging, remote sensing, Modulation Transfer Function, spot resolution, fore optics, spectral resolution, tolerance
相關次數: 點閱:643下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中針對飛行高度為6000 ft,飛行速度為100 kts的飛機,針對一套已經進行優化過的高光譜儀遙測系統進行容差分析,來補足一班加入公差後僅使用MTF評估補償器,卻沒有考慮到的成像解析度、漸暈現象等等,利用已經知道的偵測器及組件規格,跟光學模擬軟體Code V 所建立的優化模型,先用各等級公差表來建立公差,再藉由調變補償器,分析模型成像之MTF大小再進行成像解析度等,找出符合機載設計規格的實際高光譜儀系統。
    成像解析度分析部分,我們同時也考慮成像斑點大小、繞射極限解析度、跟前級光學系統解析度進行分析,模擬製造出加入容差的機載光譜遙測的offner高光譜儀系統,適用於波段400 – 1000 nm,光柵條紋間距為10 μm,成像端展開的光譜長度範圍為6.054 mm,偵測器接收光譜長度範圍為6.771 mm,系統體積大小約為20 cm × 20 cm × 10 cm,(光譜解析度在2.037 nm至2.216 nm之間,水平方向影像之斑點大小在49.355 μm至67.161 μm之間,垂直方向影像之斑點大小在44.051 μm至47.797 μm之間),與未使用補償器(光譜解析度在2.980 nm至3.384 nm之間,水平方向影像之斑點大小在59.760 μm至81.830 μm之間,垂直方向影像之斑點大小在71.805 μm至88.498 μm之間)有良好容差優化。
    針對Offner光譜儀空拍遙測系統,考慮因鏡面曲率半徑、鏡面位移、鏡面轉動而產生的誤差,在Code V裡進行模擬與添加補償器,再分析使容差預測更精確,本研究建立了一套完整設計流程。


    he purpose of this study is to design tolerance analysis of a remote hyperspectral imaging (HSI) optical system. The altitude of the airplane was 6000 ft. The velocity of the airplane was 100 kts. This study derived the range of hyperspectral imaging optical system by using the VNIR sensor. Code V, optical designing software, was operated to build the model. This study adjusts compensator to analyze Modulation Transfer Function (MTF) and Image resolution. It used these specifications to select the grating spacing.
    Base on the resolution of the system, this study divided into three parts. There are spot size, resolution of diffraction limit and resolution of fore optics. The designed spectral range is from 400 nm to 1000 nm. The grating spacing is 10 μm. The distance range of the image sensor from 400 nm to 1000 nm is 6.054 mm. The detector image size is 6.771 mm. The system size is roughly 20 cm × 20 cm × 10 cm. With compensators system the resolution of the spectral is between 2.037 nm to 2.216 nm. The sagittal spot size is from 49.355 μm to 67.161 μm. The meridional spot size is from 44.051 μm to 47.797 μm. And no compensators system have the resolution of the spectral between 2.980 nm to 3.384 nm. The sagittal spot size is from 59.760 μm to 81.830 μm. The meridional spot size is from 71.805 μm to 88.498 μm. It have good tolerance optimization.
    In this study, we establish (1) Finishing the calculation of the tolerance process; (2) Perfect tolerance design of OFFENR system.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 序論 1 1-1研究背景 1 1-2研究目的 2 1-3本文架構 2 第二章 系統機構參數 3 第三章 原理探討及文獻研究 17 3-1 公差對鏡頭系統的影響分析 17 3-2光線波前像差對擾動的影響 20 3-3公差統計方法 26 3-4調制轉移函數 (Modulation Transfer Function, MTF)運算理論 34 3-5差分法與有限差分與Monte Carlo比較 36 第四章 原理探討及文獻研究 37 4-1設定原始容差 37 4-2補償器選擇 42 4-3斑點大小光譜解析度分析 75 4-4繞射極限光譜解析度分析 95 4-5前級光學系統光譜解析度分析 100 4-6系統總光譜解析度分析 105 4-7斑點大小影像總解析度分析 110 4-8漸暈現象(vignetting)分析 117 第五章 結論 149 參考文獻 152

    [1] 徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [2] 李龍正,「高光譜影像儀發展及影像市場前景」,科儀新知,第二十六卷,第二期,第50-57頁 (2004)。
    [3] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168 (2006).
    [4] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 460-464 (2002).
    [5] Y. Hao, J . Yang, X. Jiang, W. Zheng,J. Zhou, H. Zhou, and M. Wang, “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, pp. 339-341 (2007).
    [6] 柯佳安,「可見光至近紅外波段高光譜儀之光柵間距優化與成像分析」,碩士論文,國立台灣科技大學,台北 (2016)。
    [7] Matthew P. Rimmer,“A tolerancing procedure based on modulation transfer function (MTF),” Computer-Aided Optical Design, Vol. 147, pp. 66-70 (1978).
    [8] Donald G. Koch, “A statistical approach to lens tolerancing,” Computer-Aided Optical Design, Vol. 147, pp. 71-82 (1978).
    [9] M . Rimmer,“Analysis of perturbed lens systems,” APPLIED OPTICS, vol. 9,No. 3, pp. 533-538 (1970).
    [10] M. Rimmer, J. Vanderhoff, “Calculation of OTF sensitivities,” J. Opt. Soc. Am., 67, pp. 1429 (1977).
    [11] Hana Ku, Seo Hyun Kim, Hong Jin Kong, and Jun Ho Lee, “Optical design, performance, and tolerancing of an Offner imaging spectrograph,” Proc. of SPIE Vol. 8491, pp. 84910K-6- 84910K-8 (2012).
    [12] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey, pp. 80-107 (2013).
    [13] H.H. Hopkins and H.J. Tiziani,“A theoretical and experimental study of lens centring errors and their influence on optical image quality,” British Journal of Applied Physics, Vol. 17, No. 1, pp.33-55 (1965).
    [14] 洪靖凱,「Offner光譜儀於波段400 – 1000 nm之設計與成像分析」,碩士論文,國立台灣科技大學,台北 (2015)。
    [15] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310 (2013).

    無法下載圖示 全文公開日期 2022/11/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE