簡易檢索 / 詳目顯示

研究生: 張偉哲
Wei-Che Chang
論文名稱: 深層岩盤處置隧道之工程特性探討
The Engineering Characteristics of Deep Underground Disposal Tunnel in Rock Mass
指導教授: 陳志南
Chee-Nan Chen
口試委員: 林志森
Chi-Shen Lin
彭桓沂
Huan-Yi Peng
陳堯中
Yao-Chung Chen
林宏達
Horn-Da Lin
陳志南
Chee-Nan Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 161
中文關鍵詞: 地下深層處置隧道關鍵輪進開挖三維應力重分配主應力空間立體投影最佳化岩栓打設
外文關鍵詞: Deep Underground Disposal Tunnel, Key Rounds Tunneling, 3D Stress Redistribution, Principal stress space, Stereographic Projection., Optimal Rock Bolt Installation
相關次數: 點閱:194下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能資源為人類生活品質帶來舒適性與便利性,進而提升社會經濟發展,然而核能使用後所產生之放射性廢棄物,對於人類及自然環境亦有相當潛在危險。因此,用過核燃料廢棄物之後續境內管理與最終處置處理對於世界各核能先進國家係重要之研究課題,目前大多規劃於隔絕人類生活圈之穩定深層地質環境中,興建地下深層處置設施來加以永久地處置。由於建造過程中所產生之三維主應力調整、變形累積分佈與塑性區等發展,對於深層處置設施之安全穩定性影響甚鉅,本研究採用三維數值軟體FLAC3D進行相關分析,探討地下深層核廢料處置隧道於掘進開挖之應力變化與位移分佈特性。
    首先本研究將模擬之施工階段,分為先挖之馬蹄型隧道和後挖之處置坑共兩階段開挖依序進行探討,選擇隧道開挖面上不同線型之代表測點,包含頂拱(RO)、起拱點(SP)、隧道角隅(MC)、隧道底版(MF)進行輪進開挖引致之三維應力重分配與變形分析,再針對應力位移明顯變化之區間(關鍵輪進)進行更深入特性分析,包含二維及三維之安全性評估、開挖面周圍未挖岩體之三維主應力方向旋轉及借助立體投影圖分析呈現,最後彙整輪進開挖於開挖面上不同線型測點之周圍岩體之力學機制,提供地下核廢料處置隧道之調查/規劃/施工/監測之參考。


    Nuclear energy can bring the comfort and convenience quality for human life, thereby enhancing social and economic development. However, the radioactive waste of used nuclear energy might be a considerable risk for human and natural environment. Therefore, the follow-up domestic management and the final disposal treatment are the most important research topics for the world's advanced countries. Most of current plan is to construct the deep geological disposal facilities in stable environment. Due to the three-dimensional principal stress adjustment, deformation accumulation and plastic zone development during construction process may have great impact on the stability of underground nuclear disposal facilities, the three-dimensional numerical code FLAC3D is adopted to analysising the stress and deformation distribution characteristic in this study.

    First of all the numerical excavation process can be separated into Horseshoe Tunnel and Cylinder Disposal Pit, then the different monitoring type of tunnel positions such as tunnel roof (RO), springing point (SP), main tunnel corner (MC), main tunnel floor (MF) are analyzed respectively with 3D stress redistribution and deformation accumulation. Moreover, the further characteristics of obvious stress variation at key round, which including the corresponding safety assessment between 2D and 3D stress path distribution, and spatial principal stress rotation of surrounding rock within the characteristics of stereo projection are mentioned. Finally, the mechanism and characteristics of surrounding rock near excavation surface are synthesized as a reference to investigation/ programming / construction / monitoring for deep geological disposal design.

    目 錄 第一章 緒 論 1 1.1 前言 1 1.2 研究動機與方法 1 1.3 研究方法與內容 2 第二章 文獻回顧 4 2.1 隧道掘進開挖之應力重分配 4 2.1.1 圓型隧道開挖周圍岩體之應力分佈 4 2.1.2 隧道開挖引致之塑性行為 9 2.2 隧道掘進開挖之應力路徑與安全評估 14 2.2.1 Mohr-Coulomb破壞準則 14 2.2.2 輪進開挖之應力重分配與二維應力路徑分析 16 2.2.3 輪進開挖之應力重分配與三維應力路徑分析 19 2.2.4 二維與三維之Mohr-Coulomb破壞準則特性 22 2.3 隧道掘進開挖之周圍岩壓效應 25 2.3.1 Terzaghi之地拱岩壓理論 25 2.3.2 Bierbäumer之岩壓荷重理論 30 2.3.3 Protodyakonov之地拱發展理論 34 2.4 隧道掘進開挖之應力重分配與數值模式 37 2.4.1 隧道掘進開挖之應力重分配特性 37 2.4.2 隧道掘進開挖之岩栓支撐特性 38 2.5 開挖引致之三維主應力方向旋轉與立體投影展示 41 2.5.1 隧道開挖之三維應力方向投影理論 41 2.5.2 隧道開挖之三維主應力方向演算與立體投影推導 42 第三章 隧道掘進開挖之三維數值模式建置 47 3.1 FLAC3D之基本理論架構簡介 47 3.1.1 FLAC3D之基本用詞 48 3.1.2 FLAC3D之運算程序 52 3.2 FLAC3D之組合律模式 56 3.2.1 FLAC3D之組合律模式 56 3.2.2 FLAC3D之結構元件 60 3.2.3 數值邊界與初始條件 61 3.3 數值網格建置與岩體參數設置 63 3.3.1 數值模擬分析方法 63 3.3.2 三維數值模型尺寸 64 3.3.3 邊界範圍與束制條件: 65 3.3.4 網格接合規劃與設置: 67 3.3.5 掘進開挖程序與監測佈設 68 3.3.6 岩體參數之設置 71 第四章 處置隧道開挖於頂拱處之掘進力學行為分析 72 4.1 頂拱處之三維掘進應力變化探討 72 4.1.1 先挖馬蹄型隧道之三維主應力變化分析 73 4.1.2 後挖處置孔之三維主應力變化分析 74 4.2 頂拱處之二維應力路徑變化與安全評估 75 4.2.1 頂拱處之二維應力路徑特性 75 4.2.2 頂拱處之應力路徑量化分析 77 4.3 頂拱處之三維應力路徑變化與安全評估 79 4.3.1三維主應力空間分佈與安全評估 79 4.3.2 正規化軸差平面推導 80 4.3.3 正規化軸差平面特性與三維應力路徑判讀 81 4.3.4 頂拱應力重分配於正規化軸差平面之應用 84 4.4 頂拱處之三維主應力旋轉與立體投影 86 4.5 頂拱處之三維位移掘進變化 89 4.5.1 先挖馬蹄型隧道之三維位移掘進變化 89 4.5.2 後挖處置孔之三維位移掘進變化 90 4.6 頂拱處之徑向合位移與前期變形量探討 91 4.6.1 徑向合位移變形定義 91 4.6.2 先挖馬蹄型隧道之徑向掘進變形 94 4.6.3 後挖處置坑之徑向掘進變形 95 4.7 頂拱處之岩栓最佳打設方位探討 96 4.7.1 頂拱處岩栓架設之力學機制 97 4.7.2 關鍵輪進開挖之主應力方向旋轉分析(K=1) 97 4.7.3 不同初始應力之最小主應力方位分析(K=0.5、1、2) 100 第五章 處置隧道開挖面上不同線型測點之掘進力學特性分析 102 5.1 不同線性線型變化之代表測點設置 102 5.2 不同線型測點之三維應力變化探討 103 5.2.1 最大主應力變化分析 104 5.2.2 中間主應力變化分析 105 5.2.3 最小主應力變化分析 106 5.3 不同線型測點之應力路徑變化與安全評估 107 5.3.1 先挖馬蹄型隧道之三維應力路徑變化 108 5.3.2 後挖處置坑之三維應力路徑變化 109 5.4 不同線型測點於關鍵輪進之立體投影分析 110 5.5 不同線型測點之三維位移掘進變化 115 5.5.1 垂直位移變化分析 116 5.5.2 掘進位移變化分析 117 5.5.3 水平位移變化分析 118 5.6 不同線型測點之徑向合位移變化特性 121 5.6.1 先挖馬蹄型隧道之徑向合位移變化 121 5.6.2 後挖處置坑之徑向合位移變化 123 5.6.3 徑向合位移變形預估公式之建置 124 第六章 結論與建議 130 6.1 結論 130 6.2 建議 133 參考文獻 134 附錄A:Derivation of Normalized Deviatoric Plane 141 附錄B:Normalized Algorithm of Stereographic Projection 145

    1. Abdel-Meguid, M., Rowe, R.K. and Lo, K.Y. 2003. Three-dimensional Analysis of Unlined Tunnels in Rock Subjected to High Horizontal Stress. Canadian Geotechnical Journal, 40(6):1208-1224. https://doi:10.1139/t03-057.
    2. Brown, E.T., Bray, J.W., Ladanyi, B., and Hoek, E. 1983. Ground Response Curves for Rock Tunnels. Journal of the Geotechnical Engineering, ASCE,
    109(1):15-39. https://doi:10.1061/(ASCE)0733-9410(1983)109:1(15).
    3. Bieniawski, Z.T. 1984. Empirical Methods of Design. Rock Mechanics Design in Mining and Tunneling, A.A.Balkema Publishers, Netherlands, pp.97-135.
    4. Barla, G., and Barla, M. 2001. Numerical Simulation of Squeezing Behavior in Tunnel. FLAC and Numerical Modeling in Geomechanics, Proceedings of the 2nd International FLAC Symposium, Lyon, pp.323-328.
    5. Basarir, H., Ozsan, A., and Karakus, M. 2005. Analysis of Support Requirements for A Shallow Diversion Tunnel at Guledar Dam Site, Turkey. Engineering Geology, 81(2):131-145. https://doi:10.1016/j.enggeo.2005.07.010.
    6. Bobet, A., and Einstein, H.H. 2011. Tunnel reinforcement with rock bolts. Tunnelling and Underground Space Technology, 26 (1), 100–123. https://doi.org/10.1016/j.tust.2010.06.006.
    7. Chen, W.F. and Han, D.J. 1988. Plasiticity for Structural Engineers, Springer-Verlag, New York.
    8. Chen, C. N. 1992. Microcrack Characterization and the Fracture Mechanisms of Damaged Rock (Doctoral Thesis, University of Minnesota). Minneapolis, USA. pp.74-83.
    9. Chen, C.N., and Huang, W.Y. 2007. Investigation of Tunnel Stress Path during Face Advancement. Journal of Mechanics, 23(4):451-458. https://doi:10.1017/S1727719100001507.
    10. Cai, M. 2008. Influence of stress path on tunnel excavation response-numerical tool selection and modeling strategy. Tunnelling and Underground Space Technology, 23 (6), 618–628. https://doi.org/10.1016/j.tust.2007.11.005.
    11. Cantieni, L., and Anagnostou, G. 2009. The interaction between yielding supports and squeezing ground. Tunnelling and Underground Space Technology, 24 (3), 309–322. https://doi.org/10.1016/j.tust.2008.10.001.
    12. Chen, C. N., and Tseng, C. T. 2010. 2D Tunneling Chart from Redistributed 3D Principal Stress Path. Tunnelling and Underground Space Technology, 25, 305-314. https://doi.org/10.1016/j.tust.2010.01.003.
    13. Chen, C. N., and Chang, W. C. 2017. Optimal Rock Bolt Installation Design based on 3D Rock Stress Distribution and Stereography Coupled Analysis. Journal of Mechanics, https://doi.org/10.1017/jmech.2017.67.
    14. Chen, C. N., and Chang, W. C. 2017. Directional Projection in Stereographic
    Representation of Three-Dimensional Stress Redistribution during Tunnelling.
    Tunnelling and Underground Space Technology, 70: 309-316.
    https://doi.org/10.1016/j.tust.2017.09.001.
    15. Desai, C. S., and Siriwardane, H. J. 1984. Constitutive Laws for Engineering Materials:With Emphasis on Geologic Materials. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
    16. Ellis, H.L., Feldman, A.I., and Buechel, G.J. 1999. Numerical Analysis of the Bosten Red Line Tunnel. FLAC and Numerical Modeling in Geomechanics, Proceedings of the 1st International FLAC Symposium, Minneapolis, USA. pp.323-328.
    17. Eberhardt, E. 2001. Numerical Modelling of Three-dimension Stress Rotation ahead of An Advancing Tunnel Face. International Journal of Rock Mechanics and Mining Sciences, 38(4):499-518. https://doi :10.1016/S1365-1609(01)00017-X.
    18. Fahimifar, A., and Ranjbarnia, M. 2009. Analytical approach for the design of active grouted rock bolts in tunnel stability based on convergence-confinement method. Tunnelling and Underground Space Technology, 24 (4), 363–375. https://doi.org/10.1016/j.tust.2008.10.005.
    19. Gerrard, C. 1983. Rockbolting in Theory - A Keynote Lecture. Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, pp.3-32.
    20. Goodman, R.E. 1989. Introduction to Rock Mechanics. John Wiley and Sons, New York.
    21. Galli, G., Grimaldi, A., and Leonardi, A. 2004. Three-dimensional Modelling of Tunnel Excavation and Lining. Computers and Geotechnics, 31(3):171-183.
    https://doi:10.1016/j.compgeo.2004.02.003.
    22. Gao, F.Q., Kang, H.P., 2008. Effect of pre-tensioned rock bolts on stress redistribution around a roadway-insight from numerical modeling. J. China Univ. Min. Technol., 18(4), 509–515. https://doi.org/10.1016/S1006-1266(08)60285-0.
    23. Hoek, E., and Brown, E.T. 1980. Underground Excavations in Rock. The Institution of Mining and Metallurgy, London.
    24. Holmberg, M. 1991. The Mechanical Behaviour of Untensioned Grouted Rocks Bolts (Doctoral Thesis, Department of Soil and Rock Mechanics, Royal Institute of Technology). Stockholm.
    25. Hamamoto, Kenichi. 1992. Shield Tunneling in Japan. EIT-JSCE-AIT Joint Seminar on Bangkok, pp21-41.
    26. Huang, Z., Broch, E., and Lu, M. 2002. Cavern Roof Stability - Mechanism of Arching and Stabilization by Rockbolting. Tunnelling and underground space technology, 17(3):249-261. https://doi:10.1016/S0886-7798(02)00010-X.
    27. Hisatake, M., and Hieda, Y. 2008. Three-dimensional Back-analysis Method for the Mechanical Parameters of the New Ground ahead of A Tunnel Face. Tunnelling and Underground Space Technology, 23(4):373-380.
    https://doi:10.1016/j.tust.2007.06.006.
    28. Itasca Consulting Group, Inc. 2002. Fast Lagrangian Analysis of Continua in 3 Dimensions. User’s Manual, Version 2.1, Minneapolis, Minnesota, USA.
    29. Innaurato, N., Oggeri, C., Oreste, P., Vinai, R., 2011. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels. Int. J. Mineral. Metall. Mater. 18 (3), 253–259.
    30. JAEA. 1999. H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan. Project Overview Report, Japan.
    31. Kastner, H. 1949. Über den echten Gebirgsdruck beim Bau tiefliegender Tunnel. Springer.
    32. Kirsch, G. 1898. Die Theorie der Elastizitat und Die Budurfnisse der Festigkeitslehre. Veit Verein Deutscher Ingenieure, 42 (28):797–807.
    33. Károly, Széchy. 1973. The Art of Tunneling, Akadémiai kiadó , Budapest.
    34. Kwon, S., Lee, C.S., Cho, S.J., Jeon, S.W., and Cho, W.J. 2009. An Investigation of the Excavation Damaged Zone at the KAERI Underground Research Tunnel. Tunnelling and Underground Space Technology, 24(1):1-13.
    https://doi:10.1016/j.tust.2008.01.004.
    35. Lambe, T. W. 1964. Methods of Estimating Settlement. Journal of the Soil Mechanics and Foundations Division, ASCE, 90(5):47-74.
    36. Ladanyi, B. 1974. Use of the Long-term Strength Concept in the Determination of Ground Pressure on Tunnel Linings. Proceedings of international society for rock mechanics 3rd congress, Denver, pp.1150-1165.
    37. Lambe, T. W., and Marr, W.A. 1979. Stress Path Method:Second Edition. Journal of the Geotechnical Engineering Division, ASCE, 105(6):727-738.
    38. Lee, K.M., and Rowe, R.K. 1990. Finite Element Modeling of the Three-dimensional Ground Deformations due to Tunneling in Soft Cohesive Soils: Part 2 – Results. Computers and Geotechnics, 10(2):111-138.
    https://doi:10.1016/0266-352X(90)90002-D.
    39. Lee, Y.Z., and Schubert, W. 2008. Determination of the Round Length for Tunnel Excavation in Weak Rock. Tunnelling and Underground Space Technology, 23(3):221-231. https://doi:10.1016/j.tust.2007.04.001.
    40. Low, B.K., Einstein, H.H., 2013. Reliability analysis of roof wedges and rockbolt forces in tunnels. Tunnelling and Underground Space Technology, 38, 1–10. https://doi.org/10.1016/j.tust.2013.04.006.
    41. Oettl, G., Stark, R.F., and Hofstetter, G. 1998. A Comparison of Elastic-plastic Soil Models for 2D FE Analyses of Tunneling. Computers and Geotechnics, 23(2):19-38. https://doi:10.1016/S0266-352X(98)00015-9.
    42. Oreste, P. 2005. A Probabilistic Design approach for Tunnel Supports. Computers and Geotechnics, 32(7):520-534. https://doi 10.1016/j.compgeo.2005.09.003.
    43. Panet, M., Guenot, A., 1982. Analysis of convergence behind the face of a tunnel. In: Proceedings of the International Conference on Tunnelling, Brighton, vol. 82. pp.197–204.
    44. Poulos, H.G., Davis, E.H., 1991. Elastic Solutions for Soil and Rock Mechanics. Center for Geotechnical Research, University of Sydney, Sydney.
    45. Rabcewicz, L., and Golser, J. 1973. Principles of Dimensioning the Support System for the New Austrian Tunneling Method. Water Power, IPC Electrical electronic Press Ltd, London.
    46. Ren, G., Smith, J.V., Tang, J.W., and Xie, Y.M. 2005. Underground Excavation Shape Optimization using An Evolutionary Procedure. Computers and Geotechnics, 32(2):122-132. https://doi:10.1016/j.compgeo.2004.12.001.
    47. Rajankar, I., Sitharam, T.G., 2015. Numerical studies of a tunnel excavation and its effect on stress distributions around the tunnel in underground Bangalore metro project. In: International Engineering Symposium-IES. Kumamoto University, Japan.
    48. Spang, K., and Egger, P. 1990. Action of Fully-grouted Bolts in Jointed Rock and Factors of Influence. Rock Mechanics and Rock Engineering, 23(3):201-229.
    49. Stjern, G. 1995. Practical Performance of Rock Bolts (Doctoral Thesis, University of Trondheim). Norway.
    50. Terzaghi, K. 1946. Rock Defects and Load on Tunnel Supports. Rock Tunneling with Steel Supports, R. V. Proctor and T. White, Commercial Shearing and Stamping Co., Youngstown, OH, pp.15-99.
    51. Lin Y.M. 1996. Effects of In-situ Stresses and Strain Softening Model on Tunnel Deformation (Master Thesis, Taiwan University of Science and Technology). Taipei, Taiwan.
    52. Lin C.M. 2000. Studies of the Deformation Behavior due to Rock Tunneling (Doctoral Thesis, Taiwan University of Science and Technology). Taipei, Taiwan.
    53. Liao H.L. 2005. Prediction of Early Deformation due to Rock Tunneling (Master Thesis, Taiwan University of Science and Technology). Taipei, Taiwan.
    54. Tseng C.T. 2010. Characterization of Three-dimensional Stress Redistribution from Sequential Tunneling in Rock (Doctoral Thesis, Taiwan University of Science and Technology). Taipei, Taiwan.
    55. Zhang, Q. H., Wu, A. Q., and Zhang, L. J. 2014. Statistical Analysis of Stochastic Blocks and Its Application to Rock Support. Tunnelling and Underground Space Technology, Volume 43:426-439. https://doi:10.1016/j.tust.2014.06.005.
    56. 陳正勳、黃燦輝 (1992). 「岩石隧道周圍破裂區及非軸對稱隧道問題之地盤反應曲線」,岩盤工程研討會論文專集,台南,第359-371頁。
    57. 鄺寶山、王文禮 (1993). 「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁。
    58. 洪秋金 (1995),「隧道地盤反應曲線及破裂區發展之三向度數值分析」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北。
    59. 陳志南(1998),「岩體分類及其在隧道工程之應用」,隧道工程實務,科技圖書股份有限公司,第23-48頁,台北。

    QR CODE