簡易檢索 / 詳目顯示

研究生: 林穎佑
Ying-Yu Lin
論文名稱: 積層製造結合發射器機殼晶格輕量化設計與分析之研究
Design and Analysis Lightweight Transmitter Shell by Incorporating Lattice Structures for Additive Manufacturing
指導教授: 鄭正元
口試委員: 許啟彬
Chi-Pin Hsu
陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 95
中文關鍵詞: 積層製造3D列印晶格輕量化發射器
外文關鍵詞: Additive Manufacturing, 3D Printing, Lattice, lightweight, Transmitter
相關次數: 點閱:300下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    近年來,積層製造(Additive Manufacturing,AM)技術已廣泛地運用在國防與航太產業中,積層製造有別於傳統製造方式為加法加工,傳統製造方式屬減法加工很難完成的複雜晶格與曲面結構,積層製造技術是從數位模型資訊中,透過堆疊層積的方法,完成製作任何特殊幾何與形貌,讓工程師與操作者皆可達成產品晶格輕量化的目的。在自然界中,蜂窩組織結構具有良好的高強度,且組織重量又輕,在過去航天器設計研發時,內部大量採用蜂窩結構,例如:美國B-2隱形轟炸機的機體零件,多數採用蜂窩夾層結構,即在兩片薄板間膠合蜂窩結構使機體強度增高,整 體零件重量亦可達到輕量化。本研究利用Solidworks先建立3D模型檔案,再將三角形蜂窩結構與六角形蜂窩結構導入產品,後續搭配Ansys軟體做有限元素分析,確認輕量化後的產品能否維持原有的結構強度,最後再執行產品減重後的分析比較。 本次實驗的分析結論是,貫穿的晶格結構導入在發射器機殼內,造成機殼的應力分析數據過大,進而使機殼的安全係數降低;未貫穿的晶格結構導入在發射器機殼內,晶格的生長方向不論是法向或是軸向,發射器機殼的降伏強度與原型發射器機殼差異極小,並且能夠有效地減輕發射器機殼的重量。


    Abstract
    In recent years, Additive Manufacturing (AM) technology has been widely used in the defense and aerospace industries. Additive manufacturing is different from traditional manufacturing methods for additive processing. The traditional manufacturing method is a complex lattice and curved surface structure that is difficult to complete by subtractive processing. Additive manufacturing technology is based on digital model information through the method of stacking to complete the production of any special geometry and topography so that engineers and operators can achieve the goal of lightweight product lattice. In nature, the honeycomb structure has good high strength and lightweight. In the past during the design and development of spacecraft. A large number of honeycomb structures were used inside. For example, the body parts of the American B-2 stealth bomber mostly adopted honeycomb sandwich structure. That is the honeycomb structure is glued between the two thin plates to increase the strength of the machine body and the weight of the whole parts can also be reduced. This research uses Solidworks to create a 3D model file first then introduce the triangular honeycomb structure and hexagonal honeycomb structure into the product. Followed by finite element analysis with Ansys software to confirm whether the lightweight product can maintain the original structural strength. Finally perform the analysis and comparison after the product weight loss.

    The analysis conclusion of this experiment is that the permeable lattice structure is import transmitter shell, resulting the shell’s stress analysis data to be large, which in turn reduces the safety factor of the transmitter shell. The non-penetrating lattice structure is introduced import the transmitter shell, whether the direction of the growth is the normal direction or the axis direction, the yield strength of the transmitter shell is very little from that of the prototype transmitter shell, and can effectively reduce the weight of the transmitter shell.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1. 前言 1 1.2. 研究背景及目的 3 1.3. 論文架構 4 第2章 文獻回顧 5 2.1. 積層製造原理 5 2.2. 積層製造流程 6 2.3. 積層製造的種類 10 2.3.1. 光聚合固化技術(Vat Polymerization) 11 2.3.2. 黏著劑噴塗成型技術(Binder Jetting) 12 2.3.3. 材料噴塗成型技術(Material Jetting) 13 2.3.4. 材料擠製成型技術(Material Extrusion) 14 2.3.5. 粉床熔融成型技術(Powder Bed Fusion) 15 2.3.6. 疊層製造成型技術(Sheet Lamination) 16 2.3.7. 直接能量沉積技術(Directed Energy Deposition) 17 2.4. 晶格技術介紹 18 2.4.1. 晶格的基本類型 19 2.5. 蜂窩組織晶格介紹 21 2.5.1. 蜂窩夾層結構彎曲剛度與彎曲強度 23 2.5.2. 結構形狀變化效應與形狀記憶效應 23 2.6. 火箭發動器之組件設計介紹 24 第3章 結構設計與製造 27 3.1. 發射器機殼原型 29 3.2. 發射器零件結構設計性質 30 3.3. 3D列印蜂窩組織形狀 32 3.4. 發射器機殼結構最佳化 33 3.4.1. 晶格導入設計概念 34 3.4.2. 晶格結構導入發射器 34 3.5. 有限元素基本理論 42 第4章 結果討論 43 4.1. 發射器機殼之應力分析 43 4.1.1. 材料參數設定 45 4.1.2. 匯入晶格模型 47 4.1.3. 添加模型材料屬性 48 4.1.4. 網格劃分 49 4.1.5. 邊界條件設定 50 4.2. 分析結果 56 4.3. 3D列印最佳化-晶格導入發射器(a) 68 4.4. 研究限制與結果討論 75 第5章 結論與未來展望 77 參考文獻 78

    參考文獻
    [1] Digitimes,"AI 3D列印顛覆國防與航太工業樣貌成關鍵製程技術" ,https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=10&id=0000612564_7DL64LV85Y4IS45B4SWYJ
    [2] 孟松鶴、劉人匯、楊強,"美國高速飛行器相關材料技術發展態勢分析與認識","飛航導彈",第6期,pp.99-104,2021/06
    [3] 龔立中,"大型固體火箭發動機研製的關鍵技術","新新季刊",第34卷第1期, pp.18-19,2006/01
    [4] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.3-4, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [5] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.5-6, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [6] 鄭正元等,"3D列印:積層製造技術與應用","全華科技圖書股份有限公司",2019
    [7] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.64-65, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [8] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.205-218, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [9] Dreams,"Material Jetting",https://seb199.me.vt.edu/dreams/material-jetting/
    [10] Stevens MJ, Covas JA Extruder principles and operation, 2nd edn. Springer, Dordrecht, pp. 494 , 1995 , ISBN: 0412635909, 9780412635908
    [11] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.107-108, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [12] 德芮達科技,"板層壓成型",https://www.detekt.com.tw/network/detail/95
    [13] Ian Gibson. David Rosen. Brent Stucker "Additive Manufacturing Technologies." Springer New York Heidelberg Dordrecht London , pp.246, 2015, http://doi.org/10.1007/978-1-4939-2113-3
    [14] 維基百科,"晶體結構",
    https://zh.wikipedia.org/wiki/%E6%99%B6%E4%BD%93%E7%BB%93%E6%9E%84

    [15] 李偉立,"碳奈米結構的美","科學發展",第462期,pp.56-57,2011/06
    https://www.phys.sinica.edu.tw/files/file20201006042846pm_scienceMonthly_WeiLiLee.pdf
    [16] Physorg,"Team designs carbon nanostructure stronger than diamonds",
    https://phys.org/news/2020-04-team-carbon-nanostructure-stronger-diamonds.html
    [17] 百度百科,"飛機蒙皮",baike.baidu.com/item/飛機蒙皮/993514
    [18] 華人百科,"三角形穩定性",
    https://www.itsfun.com.tw/三角形穩定性/wiki-8219844-6575824
    [19] 楊笑天,"萬能的桁架,無限的變化",https://www.xuehua.tw/a/5ec870a42f0dbce26bb69461?lang=zh-tw,2018/12/15
    [20] Kknews,"蜂窩夾層結構在飛機上的應用及發展",
    https://kknews.cc/zh-tw/news/2y2vn8r.html.,2019/08/29
    [21] H.G. Allen, Analysis and Design of Structural Sandwich Panels,1ed ,The Commonwealth and International Library: Structures and Solid Body Mechanics ,Pergamon Press, 1969
    [22] A. Petras and M. P. F. Sutcliffe, "Failure mode maps for honeycomb sandwich panels," Composite structures, vol. 44, no. 4, pp. 237-252, 1999.
    [23] T. C. Triantafillou and L. J. Gibson, "Failure mode maps for foam core sandwich beams," Materials science and engineering, vol. 95, pp. 37-53, 1987.
    [24] T. M. McCormack, R. Miller, O. Kesler, and L. J. Gibson, "Failure of sandwich beams with metallic foam cores," International journal of solids and structures, vol. 38, no. 28-29, pp. 4901-4920, 2001.
    [25] J. Banghai, L. Zhibin, and L. Fangyun, "Failure mechanism of sandwich beams subjected to three-point bending," Composite Structures, vol. 133, pp. 739-745, 2015/12/01, doi: 10.1016/j.compstruct.2015.07.056.
    [26] W. Xuelian, H. Wei Min, Z. Yong, D. Zheng, T. Cheng, and Z. Jiliang, "Mechanisms of the Shape Memory Effect in Polymeric Materials," Polymers, vol. 5, no. 4, pp. 1169-1202, 2013/09/01/, doi: 10.3390/polym5041169.
    [27] L. Sun et al., "Stimulus-responsive shape memory materials: A review," Materials and Design, vol. 33, pp. 577-640, 2012, doi: 10.1016/j.matdes.2011.04.065.
    [28] H. X. Zhu and N. J. Mills, "The in-plane non-linear compression of regular honeycombs," International journal of solids and structures, vol. 37, no. 13, pp. 1931-1949, 2000.
    [29] 蘇玉本、易扶生、陶超敬,"固體火箭發動機","新新季刊",pp.27-32,1976
    [30] 維基百科,"火箭發動機噴嘴",
    https://zh.wikipedia.org/wiki/%E7%81%AB%E7%AE%AD%E5%8F%91%E5%8A%A8%E6%9C%BA%E5%96%B7%E7%AE%A1
    [31] Baidu百科,"藥柱",
    https://baike.baidu.hk/item/%E8%97%A5%E6%9F%B1/8649835
    [32] Thsh moodle,"化學火箭發動機",
    http://moodle2.thsh.tp.edu.tw/mod/page/view.php?id=1138
    [33] Itw01,3D列印實現輕量化的四種途徑",https://itw01.com/9GAVE5D.html
    [34] 林宗達,"美國飛彈防禦系統之缺陷","展望與探索",第4卷第5期,pp.44-63,2004/05
    [35] Baidu百科,"末段高空區域防禦系統",
    https://baike.baidu.com/item/%E6%9C%AB%E6%AE%B5%E9%AB%98%E7%A9%BA%E5%8C%BA%E5%9F%9F%E9%98%B2%E5%BE%A1%E7%B3%BB%E7%BB%9F/19387588?fromtitle=THAAD&fromid=10665121&fr=aladdin
    [36] Wikimedia Commons," Wfm thaad diagram.svg ",
    https://commons.wikimedia.org/wiki/File:Wfm_thaad_diagram.svg?uselang=zh-hant
    [37] 鄭正元,"快速原型技術現況與展望",CAD/CAM World, Monthy Topic, pp.102-114, 1996/01
    [38] 傅彥程,"快速成型技術在發動機零件製造上之應用","新新季刊",第31卷第1 期,pp.20- 31,2003/01
    [39] 維基百科,"薄殼結構", http://zh.m.wikipedia.org/wiki/薄殼結構
    [40] 維基百科,"有限元素分析",
    https://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%85%83%E5%88%86%E6%9E%90#%E6%9C%89%E9%99%90%E5%85%83%E6%A6%82%E5%BF%B5
    [41] 維基百科,"終端高空防禦飛彈",
    https://zh.wikipedia.org/wiki/%E6%88%B0%E5%8D%80%E9%AB%98%E7%A9%BA%E9%98%B2%E5%BE%A1%E9%A3%9B%E5%BD%88
    [42] 維基百科,"阻力方程",https://zh.m.wikipedia.org/wiki/阻力方程
    [43] B. W. V. MacCormick, Aerodynamics, aeronautics, and flight mechanics. New York: Wiley, pp. 24 ,1979.
    [44] 五南文化事業機構科,"材料力學-頂極複習攻略",
    http://www.wunan.com.tw/www2/download/2Y10_3%E7%89%881%E5%88%B7_%E8%A9%A6%E9%96%B1_102.6.PDF
    [45] Cengel,Cimbala "流體力學","高立圖書有限公司",pp.630-685,2006。
    [46] 維基百科,"6061鋁合金",https://zh.m.wikipedia.org/wiki/6061鋁合金
    [47] Hp®惠普臺灣,Hp Jet Fusion 4200工業3D列印解決方案,
    https://www.hp.com/tw-zh/printers/3d-printers/products/multi-jet-fusion-4200.html
    [48] HP Development Company,Hp Jet Fusion 4200 3D 列印解決方案,
    https://www8.hp.com/h20195/v2/getpdf.aspx/4AA6-4892ZHT.pdf
    [49] Tanggen,飛機的蒙皮是什麼,
    https://www.tanggen.cn/a_junshi/202106/739295.html

    QR CODE