簡易檢索 / 詳目顯示

研究生: 阿米爾 那錫爾
Aamer Nazir
論文名稱: 晶格結構之設計、最佳化和分析用於高速積層製造
DESIGN, OPTIMIZATION, AND ANALYSIS OF CELLULAR STRUCTURES USING HIGH-SPEED ADDITIVE MANUFACTURING
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭逸琳
蔡明忠
傅建中
洪基彬
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 166
中文關鍵詞: 積層製造3D列印晶格結構設計與最佳化單位晶格可變密度臨界屈曲負載蜂巢結構直接數位製造高速積層製造
外文關鍵詞: Design and Optimization, Unit cell, Variable-density, Critical buckling load, Post-buckling, Cellular column, High-Speed Additive Manufacturing
相關次數: 點閱:445下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞狀結構有許多獨特優點,係由交互相連的網版組成,包含支撐結構及小的晶胞結構,具有高強度重量比、優異的能量吸收及最小物料需求。與傳統複雜的加工技術相比,積層製造技術(AM)可以直接從數位資訊中逐層建構出結構,幾乎可以製作所有類型的幾何形貌。然而,因打印速度過慢,較低的準確性和重複性,以及受限於特定應用的材料選擇上,實際存在許多限制。細胞狀結構由於其高強度重量比,普遍使用於航太及汽車產業,為增加飛機與汽車的使用效益,提出提升性能及重量比的研究。在某些情況下,航太工程已利用晶格結構來製作堅固、高及超輕的立柱。這些立柱用於航空起重機臂,航空桅杆,可展開的立柱和太陽帆上。生物醫學/醫療保健領域利用高強度重量比和最大的表面積特性,允許人體組織向內生長,並改善了生物醫學植入物的固定性,這對患者的生活方式產生了積極影響。文獻回顧表示,大多數現有研究僅集中於研究細胞結構的少數特性(壓縮/拉伸),這會限制這些結構的應用。 蜂窩結構的彎曲、屈曲、扭轉和非線性特性尚未得到足夠的研究。
    這項研究中,作者主要研究晶格晶胞尺寸、晶格形態柱高對臨界屈曲負載的影響,以及積層製造出胞柱的屈曲後行為,並使用晶胞設計方法設計了不同尺寸和形態的晶格晶胞。本研究採用高速3D列印技術(多噴射熔融)製造壓縮樣品,進行基礎實驗和模擬分析,研究各種晶格形態的臨界屈曲負載和屈曲後行為。最後,為了更進一步的分析跟優化,通過重新設計具有可變密度的結構,選擇性能最佳的垂直傾斜結構,來獲得臨界屈曲負載的最佳值。
    結論是,晶胞尺寸,晶格形態,細胞柱高,垂直樑的直徑和位置,水平或傾斜樑的數量,支撐垂直樑的位置和角度會嚴重影響臨界屈曲負載和屈曲後行為,此種行為下的柱的總質量、容積比和尺寸保持不變。此外,本研究發現晶胞尺寸明顯的影響屈曲後行為, 較大的晶胞樣品以脆裂的方式產生缺陷,且隨著晶胞尺寸的減小,這種趨勢從脆性變為韌性。結果顯示,水平或傾斜梁在屈曲情況上沒有垂直梁來的重要。然而,材料在傾斜或水平方向上的分佈也很關鍵,因為它們為垂直梁提供了支撐,使其像一個整體一樣承受屈曲負載。結果亦顯示,可以通過設計可變密度細胞柱來增加臨界屈曲負載,其中柱的外邊緣的梁比內樑的厚。


    Cellular structures are made up of an interconnected network of plates, struts, or small unit cells, and acquire many unique benefits such as high strength-to-weight ratio, excellent energy absorption, and minimizing material requirements. When compared to the complicated conventional processes, Additive Manufacturing (AM) technology is capable of fabricating geometries in almost all types of shapes, even with the small cellular structures inside, by adding material layer-by-layer directly from the digital data file. However, there are numerous limitations, which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. The applications of cellular structures are expanding into various new areas, particularly in aerospace, automotive, biomedical, and shoe industries. Due to the high strength-to-weight ratio, the cellular structure has been used in aerospace and automotive industries, aiming to enhance the performance-to-weight ratio that can increase the efficiency of aircraft and automotive vehicles. In some cases, lattice structures have been exploited by aerospace engineers to construct stiff, robust, tall but ultralight columns, employed in aerospace crane arms, aerospace masts, deployable columns, and solar sails. High strength-to-weight ratio and maximization of surface area properties are exploited in the biomedical/healthcare sector, allowing ingrowth of the human tissue, and improved fixation of the bio-medical implant which positively influences patient’s lifestyle. The literature review has revealed that most of the existing studies have focused on investigating only a few properties (compressive/tensile) of cellular structures that can limit the application of these structures. Bending, buckling, torsion and nonlinear properties of cellular structures have not been studied sufficiently.
    In this study, the author aims to investigate the effect of lattice unit cell dimensions, lattice morphology, and the height of the column on critical buckling load and post-buckling behavior of additively manufactured cellular columns. Lattice unit cells of different dimensions and various morphologies were designed using the unit cell design method. A high-speed 3D printing process (Multijet Fusion) was employed to fabricate the compressive samples for this study. Both experimental and simulation-based studies were conducted to investigate the critical buckling load and post-buckling behavior of various lattice morphologies. Finally, the best performing vertical inclined structure was chosen for further analysis and optimization by redesigning the structure with variable-density. This variable-density density structure was analyzed to achieve the optimal value of critical buckling load.
    It is concluded that the unit cell dimensions, lattice morphology, cellular column height, diameter and position of vertical beams, number of horizontal or inclined beams, location and angle of the beams that supports the vertical beams significantly affect the critical buckling load and post-buckling behavior, while the total mass, volume fraction, and dimensions of the column remain the same. Additionally, it was found that the unit cell size significantly affects on the post-buckling behavior; the samples of larger unit cells failed in a brittle manner, and this trend continuously changed from brittle to ductile as the unit cell size reduces. It is revealed that vertical beams are more crucial for buckling cases, when compared with horizontal or inclined beams; however, material distribution in inclined or horizontal orientation is also critical because they provide support to vertical beams to behave as a single body to bear the buckling load. The results also revealed that the critical buckling load could be increased by designing variable density cellular columns in which the beams at the outer edges of the column is thicker compared with inner beams.

    We cannot reveal the table of contents at the moment because some of the chapters still need to be published.

    1. Vijayavenkataraman S, Lu WF, Fuh JYH (2016) 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8:032001. https://doi.org/10.1088/1758-5090/8/3/032001
    2. Wang J, Tang H (2016) Review on metals additively manufactured by SEBM. Mater Technol 1–4. https://doi.org/10.1179/1753555715Y.0000000081
    3. Savio G, Rosso S, Meneghello R, Concheri G (2018) Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review. Appl Bionics Biomech 2018:1–14. https://doi.org/10.1155/2018/1654782
    4. Hajash K, Sparrman B, Guberan C, et al (2017) Large-Scale Rapid Liquid Printing. 3D Print Addit Manuf 4:123–132. https://doi.org/10.1089/3dp.2017.0037
    5. Chen X, Liu W, Dong B, et al (2018) High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness. Adv Mater 30:1705683. https://doi.org/10.1002/adma.201705683
    6. Ellis A (2017) High Speed Sintering: The Next Generation of Manufacturing. In: Magdassi S, Kamyshny A (eds) Nanomaterials for 2D and 3D Printing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 107–118
    7. Shaw L, Islam M, Li J, et al (2018) High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles. JOM 70:284–291. https://doi.org/10.1007/s11837-017-2729-4
    8. Kowsari K, Akbari S, Wang D, et al (2018) High-Efficiency High-Resolution Multimaterial Fabrication for Digital Light Processing-Based Three-Dimensional Printing. 3D Print Addit Manuf 5:185–193. https://doi.org/10.1089/3dp.2018.0004
    9. Wang Z, Martin N, Hini D, et al (2017) Rapid Fabrication of Multilayer Microfluidic Devices Using the Liquid Crystal Display-Based Stereolithography 3D Printing System. 3D Print Addit Manuf 4:156–164. https://doi.org/10.1089/3dp.2017.0028
    10. Panda BN, Bahubalendruni RM, Biswal BB, Leite M (2017) A CAD-based approach for measuring volumetric error in layered manufacturing. Proc Inst Mech Eng Part C J Mech Eng Sci 231:2398–2406. https://doi.org/10.1177/0954406216634746
    11. Nayak R, Bahubalendruni MVAR, Biswal BB, Chauhan PP (2016) An Approach towards Economized 3D Printing. Appl Mech Mater 852:185–191. https://doi.org/10.4028/www.scientific.net/AMM.852.185
    12. Contuzzi N, Campanelli SL, Casavola C, Lamberti L (2013) Manufacturing and characterization of 18Ni marage 300 lattice components by selective laser melting. Materials (Basel) 6:3451–3468. https://doi.org/10.3390/ma6083451
    13. Habib FN, Iovenitti P, Masood SH, Nikzad M (2018) Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology. Mater Des 155:86–98. https://doi.org/10.1016/J.MATDES.2018.05.059
    14. Carbon The Future of 3D Manufacturing Printers & Systems. https://www.carbon3d.com/. Accessed 20 Feb 2019
    15. Chen X, Zhao G, Wu Y, et al (2017) Cellular carbon microstructures developed by using stereolithography. Carbon N Y 123:34–44. https://doi.org/10.1016/J.CARBON.2017.07.043
    16. Cheng L, Zhang P, Biyikli E, et al (2017) Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation. Rapid Prototyp J 23:660–677. https://doi.org/10.1108/RPJ-04-2016-0069
    17. Rumpf RC, Pazos J, Garcia CR, et al (2013) 3D printed lattices with spatially variant self-collimation. Prog Electromagn Res 139:1–15
    18. Iyibilgin O, Leu MC, Yigit C (2013) Experimental Investigation of Different Cellular Lattice Structures Manufactured by Fused Deposition Modeling. In: Proceedings of the Solid Freeform Fabrication Symposium. Texas, pp 895–907
    19. Karamooz Ravari MR, Kadkhodaei M, Badrossamay M, Rezaei R (2014) Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling. Int J Mech Sci 88:154–161. https://doi.org/10.1016/J.IJMECSCI.2014.08.009
    20. Snelling D, Li Q, Meisel N, et al (2015) Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds. Adv Eng Mater 17:923–932. https://doi.org/10.1002/adem.201400524
    21. Tang Y, Zhou Y, Hoff T, et al (2016) Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process. Mater Sci Technol 32:648–656. https://doi.org/10.1179/1743284715Y.0000000084
    22. Druschitz A, Williams C, Snelling D, Seals M (2014) Additive Manufacturing Supports the Production of Complex Castings. In: Shape Casting: 5th International Symposium 2014. Springer International Publishing, Cham, pp 51–57
    23. Leary M, Mazur M, Elambasseril J, et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357. https://doi.org/10.1016/j.matdes.2016.02.127
    24. Hao L, Raymont D, Yan C, et al (2011) Design and additive manufacturing of cellular lattice structures. In: Innovative Developments in Virtual and Physical Prototyping. pp 249–254
    25. Gu D (2015) Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms. In: Laser Additive Manufacturing of High-Performance Materials. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 15–71
    26. Challis VJ, Xu X, Zhang LC, et al (2014) High specific strength and stiffness structures produced using selective laser melting. Mater Des 63:783–788. https://doi.org/10.1016/j.matdes.2014.05.064
    27. Gibson I (Ian), Rosen DW (David W., Stucker B (Brent) (2010) Additive manufacturing technologies : rapid prototyping to direct digital manufacturing. Springer
    28. Plotkowski A, Rios O, Sridharan N, et al (2017) Evaluation of an Al-Ce alloy for laser additive manufacturing. Acta Mater 126:507–519. https://doi.org/10.1016/J.ACTAMAT.2016.12.065
    29. Williams SW, Martina F, Addison AC, et al (2016) Wire + Arc Additive Manufacturing. Mater Sci Technol 32:641–647. https://doi.org/10.1179/1743284715Y.0000000073
    30. Bandari YK, Lee YS, Nandwana P, et al (2018) Effect of Inter-layer Cooling Time on Distortion and Mechanical Properties in Metal Additive Manufacturing DISTORTION AND MECHANICAL PROPERTIES IN METAL ADDITIVE MANUFACTURING. In: Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
    31. Bandari Y, Williams S, Ding J, Martina F (2015) Additive manufacture of large structures: robotic or CNC systems? In: Proceedings of the 26th International Solid Freeform Fabrication Symposium. Austin, pp 12–14
    32. Hagel J, Brown JS (2015) The future of Manufacturing-Making things in a changing world. Deloitte Univ Press Westlake 4–18
    33. Ashby MF (2005) Materials selection in mechanical design, 3rd ed. Butterworth-Heinemann
    34. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys Eng Sci 466:2495–2516. https://doi.org/10.1098/rspa.2010.0215
    35. Wester T (2002) Nature Teaching Structures. Int J Sp Struct 17:135–147. https://doi.org/10.1260/026635102320321789
    36. Lian J, Gorski J, Ott S Bone Structure and Function. https://depts.washington.edu/bonebio/ASBMRed/structure.html. Accessed 23 Feb 2019
    37. Lagorce-Tachon A, Karbowiak T, Loupiac C, et al (2015) The cork viewed from the inside. J Food Eng 149:214–221. https://doi.org/10.1016/J.JFOODENG.2014.10.023
    38. Gibson LJ, Ashby M. (1997) Cellular Solids, structure and properties, 2nd ed. Cambridge University Press
    39. Zok FW, Latture RM, Begley MR (2016) Periodic truss structures. J Mech Phys Solids 96:184–203. https://doi.org/10.1016/J.JMPS.2016.07.007
    40. Baldick R (2008) Applied Optimization: Formulation and Algorithms for Engineering Systems. Cambridge University Press
    41. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766. https://doi.org/10.1098/rsif.2012.0341
    42. Kamm RD (2002) Cellular Fluid Mechanics. Annu Rev Fluid Mech 34:211–232. https://doi.org/10.1146/annurev.fluid.34.082401.165302
    43. Saranathan V, Osuji CO, Mochrie SGJ, et al (2010) Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci U S A 107:11676–81. https://doi.org/10.1073/pnas.0909616107
    44. Launey ME, Buehler MJ, Ritchie RO (2010) On the Mechanistic Origins of Toughness in Bone. Annu Rev Mater Res 40:25–53. https://doi.org/10.1146/annurev-matsci-070909-104427
    45. Vincent JF V. (1982) Structural Biomaterials. Palgrave Macmillan Limited
    46. Jonbailey microscopy | bone. https://archimorph.com/2010/01/12/microscopy-bone/. Accessed 20 Feb 2019
    47. Great Plains Nature Center Insects | GPNC. https://gpnc.org/insects/. Accessed 2 Mar 2019
    48. 32 Intriguing Examples of Fungi Photography. https://www.thephotoargus.com/32-intriguing-examples-of-fungi-photography/. Accessed 30 Dec 2017
    49. Voronoi structures. https://www.pinterest.com/pin/341640321725152778/. Accessed 20 Feb 2019
    50. Wing of a dragonfly. https://www.pinterest.com/pin/457889487106234409/. Accessed 20 Feb 2019
    51. Jordan T, Oxman N Performance driven design & Prototyping. http://ming3d.com/DAAP/ARCH719sp11/?p=295. Accessed 20 Feb 2019
    52. Wang A-J, McDowell DL (2005) Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int J Plast 21:285–320. https://doi.org/10.1016/J.IJPLAS.2003.12.002
    53. Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769. https://doi.org/10.1016/S0022-5096(01)00010-2
    54. Evans AG, Hutchinson JW, Fleck NA, et al (2001) The topological design of multifunctional cellular metals. Prog Mater Sci 46:309–327. https://doi.org/10.1016/S0079-6425(00)00016-5
    55. Fleck NA (2004) An overview of the mechanical properties of foams and periodic lattice materials. In: Proceedings of the Symposium on Cellular Metals and Polymers. Furth, pp 3–7
    56. Gorguluarslan RM, Gandhi UN, Mandapati R, Choi S-K (2016) Design and fabrication of periodic lattice-based cellular structures. Comput Aided Des Appl 13:50–62. https://doi.org/10.1080/16864360.2015.1059194
    57. Yan C, Hao L, Hussein A, et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541. https://doi.org/10.1016/j.matdes.2013.10.027
    58. Johnston SR, Rosen DW, Reed M, Wang HV (2006) Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures. In: Solid freeform fabrication symposium. Georgia Institute of Technology, Austin, pp 421–432
    59. Rosen DW (2007) Computer-Aided Design for Additive Manufacturing of Cellular Structures. Comput Aided Des Appl 4:585–594. https://doi.org/10.1080/16864360.2007.10738493
    60. Chang PS, Rosen DW (2013) The size matching and scaling method: a synthesis method for the design of mesoscale cellular structures. Int J Comput Integr Manuf 26:907–927. https://doi.org/10.1080/0951192X.2011.650880
    61. Schwarz HA (1890) Gesammelte mathematische Abhandlungen, Volume 1. J. Springer
    62. Schoen AH (1970) Infinite Periodic Minimal Surfaces without Self-Intersections. NASA Technical Report# D5541
    63. Wang Y (2007) Periodic surface modeling for computer aided nano design. Comput Des 39:179–189. https://doi.org/10.1016/J.CAD.2006.09.005
    64. Gandy PJF, Bardhan S, Mackay AL, Klinowski J (2001) Nodal surface approximations to the P,G,D and I-WP triply periodic minimal surfaces. Chem Phys Lett 336:187–195. https://doi.org/10.1016/S0009-2614(00)01418-4
    65. Wang J, Evans AG, Dharmasena K, Wadley HNG (2003) On the performance of truss panels with Kagomé cores. Int J Solids Struct 40:6981–6988. https://doi.org/10.1016/S0020-7683(03)00349-4
    66. Chu C, Graf G, Rosen DW (2008) Design for Additive Manufacturing of Cellular Structures. Comput Aided Des Appl 5:686–696. https://doi.org/10.3722/cadaps.2008.686-696
    67. Winter RE, Cotton M, Harris EJ, et al (2012) Plate-impact loading of cellular structures formed by selective laser melting. Trans Built Environ 126:1743–3509. https://doi.org/10.2495/SU120131
    68. Lehmhus D, Vesenjak M, Schampheleire S, et al (2017) From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals. Materials (Basel) 10:922. https://doi.org/10.3390/ma10080922
    69. Yang L, Harrysson O, West H, Cormier D (2015) Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct 69–70:475–490. https://doi.org/10.1016/J.IJSOLSTR.2015.05.005
    70. Yoo DJ (2011) Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32:7741–7754. https://doi.org/10.1016/J.BIOMATERIALS.2011.07.019
    71. Ataee A, Li Y, Fraser D, et al (2018) Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des 137:345–354. https://doi.org/10.1016/J.MATDES.2017.10.040
    72. Azman AH, Vignat F (2014) Evaluating Current CAD Tools Performances in the Context of Design for Additive Manufacturing. In: Joint Conference on Mechanical, Design Engineering & Advanced Manufacturing. Toulouse, pp 1–7
    73. Bauer J, Hengsbach S, Tesari I, et al (2014) High-strength cellular ceramic composites with 3D microarchitecture. Proc Natl Acad Sci U S A 111:2453–8. https://doi.org/10.1073/pnas.1315147111
    74. Bernal Ostos J, Rinaldi RG, m Hammetter C, et al (2012) Deformation stabilization of lattice structures via foam addition. Acta Mater 60:6476–6485. https://doi.org/10.1016/J.ACTAMAT.2012.07.053
    75. Brooks W, Sutcliffe C, Cantwell W, et al (2005) Rapid Design and Manufacture of Ultralight Cellular Materials. In: Proceedings of the Solid Freeform Fabrication Symposium. Texas, pp 231–241
    76. Santorinaios M, Brooks W, Sutcliffe CJ, Mines RAW (2006) Crush Behaviour Of Open Cellular LatticeStructures Manufactured UsingSelective Laser Melting. WIT Trans Built Environ 85:. https://doi.org/10.2495/HPSM060471
    77. Campoli G, Borleffs MS, Amin Yavari S, et al (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965. https://doi.org/10.1016/J.MATDES.2013.01.071
    78. Cansizoglu O, Harrysson O, Cormier D, et al (2008) Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A 492:468–474. https://doi.org/10.1016/J.MSEA.2008.04.002
    79. Cerardi A, Caneri M, Meneghello R, et al (2013) Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies. Mater Des 46:910–915. https://doi.org/10.1016/j.matdes.2012.11.042
    80. Challis VJ, Xu X, Zhang LC, et al (2014) High specific strength and stiffness structures produced using selective laser melting. Mater Des 63:783–788. https://doi.org/10.1016/J.MATDES.2014.05.064
    81. Cheng XY, Li SJ, Murr LE, et al (2012) Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16:153–162. https://doi.org/10.1016/J.JMBBM.2012.10.005
    82. Cheng L, Zhang P, Biyikli E, et al (2017) Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation. Rapid Prototyp J 23:660–677. https://doi.org/10.1108/RPJ-04-2016-0069
    83. Cheng L, Zhang P, Biyikli E, et al (2015) Integration of topology optimization with efficient design of additive manufactured cellular structures. In: Solid Freeform Fabrication Symposium. Austin, pp 10–12
    84. Dong L, Deshpande V, Wadley H (2015) Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int J Solids Struct 60–61:107–124. https://doi.org/10.1016/J.IJSOLSTR.2015.02.020
    85. Xiao D, Yang Y, Su X, et al (2012) Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds. Trans Nonferrous Met Soc China 22:2554–2561. https://doi.org/10.1016/S1003-6326(11)61500-8
    86. Doty RE, Kolodziejska JA, Jacobsen AJ (2012) Hierarchical Polymer Microlattice Structures. Adv Eng Mater 14:503–507. https://doi.org/10.1002/adem.201200007
    87. Evans AG, Hutchinson JW, Fleck NA, et al (2001) The topological design of multifunctional cellular metals. Prog Mater Sci 46:309–327. https://doi.org/10.1016/S0079-6425(00)00016-5
    88. Evans AG, He MY, Deshpande VS, et al (2010) Concepts for enhanced energy absorption using hollow micro-lattices. Int J Impact Eng 37:947–959. https://doi.org/10.1016/J.IJIMPENG.2010.03.007
    89. Feng R, Liu F, Xu W, et al (2016) Topology optimization method of lattice structures based on a genetic algorithm. Int J Steel Struct 16:743–753. https://doi.org/10.1007/s13296-015-0208-8
    90. Gandy PJF, Cvijović D, Mackay AL, Klinowski J (1999) Exact computation of the triply periodic D (`diamond’) minimal surface. Chem Phys Lett 314:543–551. https://doi.org/10.1016/S0009-2614(99)01000-3
    91. Gandy PJF, Klinowski J (2000) Exact computation of the triply periodic Schwarz P minimal surface. Chem Phys Lett 322:579–586. https://doi.org/10.1016/S0009-2614(00)00453-X
    92. Gandy PJ., Klinowski J (2000) Exact computation of the triply periodic G (`Gyroid’) minimal surface. Chem Phys Lett 321:363–371. https://doi.org/10.1016/S0009-2614(00)00373-0
    93. Gandhi UN, Gorguluarslan RM, Song Y, Mandapati R (2015) Designing Lattice Structures For 3D Printing. In: SPE Automotive Composites Conference & Exhibition. pp 1–14
    94. Gautam R, Idapalapati S, Feih S (2018) Printing and characterisation of Kagome lattice structures by fused deposition modelling. Mater Des 137:266–275. https://doi.org/10.1016/J.MATDES.2017.10.022
    95. Gorguluarslan RM, Gandhi UN, Mandapati R, Choi SK (2016) Design and fabrication of periodic lattice-based cellular structures. Comput Aided Des Appl 13:50–62. https://doi.org/10.1080/16864360.2015.1059194
    96. Gorny B, Niendorf T, Lackmann J, et al (2011) In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting. Mater Sci Eng A 528:7962–7967. https://doi.org/10.1016/J.MSEA.2011.07.026
    97. Guessasma S, Tao L, Belhabib S, et al (2018) Analysis of microstructure and mechanical performance of polymeric cellular structures designed using stereolithography. Eur Polym J 98:72–82. https://doi.org/10.1016/J.EURPOLYMJ.2017.10.034
    98. Gümrük R, Mines RAW (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139. https://doi.org/10.1016/J.IJMECSCI.2013.01.006
    99. Gümrük R, Mines RAW, Karadeniz S (2013) Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions. Mater Sci Eng A 586:392–406. https://doi.org/10.1016/J.MSEA.2013.07.070
    100. Hammetter CI, Rinaldi RG, Zok FW (2013) Pyramidal Lattice Structures for High Strength and Energy Absorption. J Appl Mech 80:041015. https://doi.org/10.1115/1.4007865
    101. Hedayati R, Sadighi M, Mohammadi Aghdam M, et al (2016) Mechanical Properties of Additively Manufactured Thick Honeycombs. Materials (Basel) 9:613. https://doi.org/10.3390/ma9080613
    102. Heinl P, Körner C, Singer RF (2008) Selective Electron Beam Melting of Cellular Titanium: Mechanical Properties. Adv Eng Mater 10:882–888. https://doi.org/10.1002/adem.200800137
    103. Helou M, Vongbunyong S, Kara S (2016) Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP 50:94–99. https://doi.org/10.1016/J.PROCIR.2016.05.018
    104. Huang X, Xie YM (2008) Optimal design of periodic structures using evolutionary topology optimization. Struct Multidiscip Optim 36:597–606. https://doi.org/10.1007/s00158-007-0196-1
    105. Hussein A, Hao L, Yan C, et al (2013) Advanced lattice support structures for metal additive manufacturing. J Mater Process Technol 213:1019–1026. https://doi.org/10.1016/J.JMATPROTEC.2013.01.020
    106. Hyun S, Karlsson AM, Torquato S, Evans AG (2003) Simulated properties of Kagomé and tetragonal truss core panels. Int J Solids Struct 40:6989–6998. https://doi.org/10.1016/S0020-7683(03)00350-0
    107. Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Micro-scale Truss Structures formed from Self-Propagating Photopolymer Waveguides. Adv Mater 19:3892–3896. https://doi.org/10.1002/adma.200700797
    108. Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides. Acta Mater 55:6724–6733. https://doi.org/10.1016/J.ACTAMAT.2007.08.036
    109. Jacobsen AJ, Barvosa-Carter W, Nutt S (2008) Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Mater 56:2540–2548. https://doi.org/10.1016/J.ACTAMAT.2008.01.051
    110. Lee J-W, Choi H-J, Jung T-K, et al (2016) Mechanical Properties of a Tetrahedrally Cored Titanium Lattice Structure Fabricated by Pressure-Assisted Investment Casting. J Nanosci Nanotechnol 16:11214–11218. https://doi.org/10.1166/jnn.2016.13480
    111. Li SJ, Murr LE, Cheng XY, et al (2012) Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater 60:793–802. https://doi.org/10.1016/J.ACTAMAT.2011.10.051
    112. Li SJ, Xu QS, Wang Z, et al (2014) Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater 10:4537–4547. https://doi.org/10.1016/J.ACTBIO.2014.06.010
    113. McKown S, Shen Y, Brookes WK, et al (2008) The quasi-static and blast loading response of lattice structures. Int J Impact Eng 35:795–810. https://doi.org/10.1016/J.IJIMPENG.2007.10.005
    114. Messner MC (2016) Optimal lattice-structured materials. J Mech Phys Solids 96:162–183. https://doi.org/10.1016/J.JMPS.2016.07.010
    115. Mines R, McKown S, Cantwell W, Brooks W (2007) On the progressive collapse of micro lattice structures. In: Experimental Analysis of Nano and Engineering Materials and Structures. Springer, pp 743–744
    116. Murr LE, Gaytan SM, Medina F, et al (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc A Math Phys Eng Sci 368:1999–2032. https://doi.org/10.1098/rsta.2010.0010
    117. Murr LE, Amato KN, Li SJ, et al (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4:1396–1411. https://doi.org/10.1016/J.JMBBM.2011.05.010
    118. Nguyen J, Park S, Rosen D (2013) Heuristic optimization method for cellular structure design of light weight components. Int J Precis Eng Manuf 14:1071–1078. https://doi.org/10.1007/s12541-013-0144-5
    119. Ozdemir Z, Hernandez-Nava E, Tyas A, et al (2016) Energy absorption in lattice structures in dynamics: Experiments. Int J Impact Eng 89:49–61. https://doi.org/10.1016/J.IJIMPENG.2015.10.007
    120. Pettermann HE, Hüsing J (2012) Modeling and simulation of relaxation in viscoelastic open cell materials and structures. Int J Solids Struct 49:2848–2853. https://doi.org/10.1016/J.IJSOLSTR.2012.04.027
    121. Queheillalt D, Deshpande V, Wadley H (2007) Truss waviness effects in cellular lattice structures. J Mech Mater Struct 2:1657–1675. https://doi.org/10.2140/jomms.2007.2.1657
    122. Ramirez DA, Murr LE, Li SJ, et al (2011) Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 528:5379–5386. https://doi.org/10.1016/J.MSEA.2011.03.053
    123. Raney JR, Lewis JA (2015) Printing mesoscale architectures. MRS Bull 40:943–950. https://doi.org/10.1557/mrs.2015.235
    124. Rathbun HJ, Wei Z, He MY, et al (2004) Measurement and Simulation of the Performance of a Lightweight Metallic Sandwich Structure With a Tetrahedral Truss Core. J Appl Mech 71:368. https://doi.org/10.1115/1.1757487
    125. Rehme O, Emmelmann C (2006) Rapid manufacturing of lattice structures with selective laser melting. In: Bachmann FG, Hoving W, Lu Y, Washio K (eds) Laser based Micropackaging. International Society for Optics and Photonics, p 61070K
    126. Schaedler TA, Jacobsen AJ, Torrents A, et al (2011) Ultralight metallic microlattices. Science 334:962–5. https://doi.org/10.1126/science.1211649
    127. Seo H, Heo SG, Lee H, Yoon H (2017) Preparation of PEG materials for constructing complex structures by stereolithographic 3D printing. RSC Adv 7:28684–28688. https://doi.org/10.1039/C7RA04492E
    128. Smith M, Cantwell W, Guan Z, et al (2011) The quasi-static and blast response of steel lattice structures. J Sandw Struct Mater 13:479–501. https://doi.org/10.1177/1099636210388983
    129. Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41. https://doi.org/10.1016/j.ijmecsci.2012.12.004
    130. Snelling DA, Williams CB, Suchicital CTA, Druschitz AP (2017) Binder jetting advanced ceramics for metal-ceramic composite structures. Int J Adv Manuf Technol 92:531–545. https://doi.org/10.1007/s00170-017-0139-y
    131. Strano G, Hao L, Everson RM, Evans KE (2013) A new approach to the design and optimisation of support structures in additive manufacturing. Int J Adv Manuf Technol 66:. https://doi.org/10.1007/s00170-012-4403-x
    132. Sun J, Yang Y, Wang D (2013) Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater Des 49:545–552. https://doi.org/10.1016/J.MATDES.2013.01.038
    133. Surmeneva MA, Surmenev RA, Chudinova EA, et al (2017) Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction. Mater Des 133:195–204. https://doi.org/10.1016/J.MATDES.2017.07.059
    134. Tancogne-Dejean T, Spierings AB, Mohr D (2016) Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater 116:14–28. https://doi.org/10.1016/J.ACTAMAT.2016.05.054
    135. Teufelhart S, Solid GR (2012) Optimization of strut diameters in lattice structures. In: 23th Annual Solid Freeform Fabrication Symposium (SFF). sffsymposium.engr.utexas.edu, pp 6–8
    136. Teufelhart S (2014) Investigation of the Capability of Flux of Force Oriented Lattice Structures for Lightweight Design. Adv Mater Res 907:75–87. https://doi.org/10.4028/www.scientific.net/AMR.907.75
    137. Wang HV, Chen Y, Rosen DW (2005) A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures. ASME Comput Inf Eng Conf 2005:421–427. https://doi.org/10.1115/DETC2005-85366
    138. Watts DM, Hague RJM (2006) Exploiting the design freedom of RM. In: Proceedings of the 17th Solid Freeform Fabrication Symposium (SFF). Texas, pp 656–667
    139. Wendy Gu X, Greer JR (2015) Ultra-strong architected Cu meso-lattices. Extrem Mech Lett 2:7–14. https://doi.org/10.1016/J.EML.2015.01.006
    140. Wicks N, Hutchinson JW (2001) Optimal truss plates. Int J Solids Struct 38:5165–5183. https://doi.org/10.1016/S0020-7683(00)00315-2
    141. Williams CB, Cochran JK, Rosen DW (2011) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53:231–239. https://doi.org/10.1007/s00170-010-2812-2
    142. Winter RE, Cotton M, Harris EJ, et al (2014) Plate-impact loading of cellular structures formed by selective laser melting. Model Simul Mater Sci Eng 22:025021. https://doi.org/10.1088/0965-0393/22/2/025021
    143. Yang L, Harrysson O, Cormier D, et al (2015) Additive Manufacturing of Metal Cellular Structures: Design and Fabrication. JOM 67:608–615. https://doi.org/10.1007/s11837-015-1322-y
    144. Yang L (2015) Experimental-assisted design development for an octahedral cellular structure using additive manufacturing. Rapid Prototyp J 21:168–176. https://doi.org/10.1108/RPJ-12-2014-0178
    145. Yan C, Hao L, Hussein A, Raymont D (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38. https://doi.org/10.1016/j.ijmachtools.2012.06.002
    146. Zheng X, Lee H, Weisgraber TH, et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science (80- ) 344:1373–1377. https://doi.org/10.1126/science.1252291
    147. Zhang P, Toman J, Yu Y, et al (2015) Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation. J Manuf Sci Eng 137:021004. https://doi.org/10.1115/1.4028724
    148. Lakes R (1993) Materials with structural hierarchy. Nature 361:511–515. https://doi.org/10.1038/361511a0
    149. Ashby MF, Evans A, Fleck NA, et al (2000) Metal foams: a design guide. Butterworth-Heinemann Elsevier
    150. Kang K-J (2009) A wire-woven cellular metal of ultrahigh strength. Acta Mater 57:1865–1874. https://doi.org/10.1016/J.ACTAMAT.2008.12.027
    151. Leach AG (1993) The thermal conductivity of foams. I. Models for heat conduction. J Phys D Appl Phys 26:733–739. https://doi.org/10.1088/0022-3727/26/5/003
    152. Rohacell (2018) High-performance structural foam cores. https://www.rohacell.com/product/rohacell/en/about/. Accessed 2 Mar 2019
    153. (2018) Shinko Wire Company, Ltd. http://www.shinko-wire.co.jp/english/. Accessed 20 Feb 2019
    154. Frulloni E, Kenny JM, Conti P, Torre L (2007) Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications. Compos Struct 78:519–528. https://doi.org/10.1016/J.COMPSTRUCT.2005.11.013
    155. Weiss P (2003) Wings of Change. Sci News 164:359. https://doi.org/10.2307/4018925
    156. Stratasys Blog World’s First Jet-Powered, 3D Printed UAV Tops 150 MPH with Lightweight Stratasys Materials. http://blog.stratasys.com/2015/11/09/aurora-uav-3d-printing/. Accessed 20 Feb 2019
    157. Maheshwaraa U, Bourell D, Conner Seepersad C (2007) Design and freeform fabrication of deployable structures with lattice skins. Rapid Prototyp J 13:213–225. https://doi.org/10.1108/13552540710776160
    158. Maheshwaraa Namasivayam U, Conner Seepersad C (2011) Topology design and freeform fabrication of deployable structures with lattice skins. Rapid Prototyp J 17:5–16. https://doi.org/10.1108/13552541111098581
    159. Paz R, Monzón MD, González B, et al (2016) Lightweight parametric optimisation method for cellular structures in additive manufactured parts. Int J Simul Multidiscip Des Optim 7:A6. https://doi.org/10.1051/smdo/2016009
    160. Dakshnamoorthy V (2016) Automated Lattice Optimization of Hinge Fitting with Displacement Constraint (Doctoral Dissertation). University of Texas Arlington
    161. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. https://doi.org/10.1016/S0079-6425(00)00002-5
    162. Miura K, Furuya H, Suzuki K (1985) Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronaut 12:599–607. https://doi.org/10.1016/0094-5765(85)90131-6
    163. McEachen ME (2012) Validation of slender lattice trusses by modeling and testing. In: Journal of Spacecraft and Rockets. Orlando, pp 970–977
    164. Hinkle JD, Warren P, Peterson LD (2002) Geometric imperfection effects in an elastically deployable isogrid column. J Spacecr Rockets 39:662–668. https://doi.org/10.2514/2.3887
    165. Sutradhar A, Park J, Carrau D, Miller MJ (2014) Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis. Comput Biol Med 52:8–17. https://doi.org/10.1016/J.COMPBIOMED.2014.06.002
    166. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. In: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, pp 13222–7
    167. Sundararajan VG (2010) Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions. The University of Texas at Austin
    168. Tarik Arafat M, Gibson I, Li X (2014) State of the art and future direction of additive manufactured scaffolds-based bone tissue engineering. Rapid Prototyp J 20:13–26. https://doi.org/10.1108/RPJ-03-2012-0023
    169. Armillotta A, Pelzer R (2008) Modeling of porous structures for rapid prototyping of tissue engineering scaffolds. Int J Adv Manuf Technol 39:501–511. https://doi.org/10.1007/s00170-007-1247-x
    170. Ohldin P (2010) Series Production of CE-Certified Orthopedic Implants with Integrated Porous Structures for Improved Bone Ingrowth. In: Proceedings of the 21st International DAAAM Symposium. DAAAM International, pp 1585–1587
    171. Dias MR, Guedes JM, Flanagan CL, et al (2014) Optimization of scaffold design for bone tissue engineering: A computational and experimental study. Med Eng Phys 36:448–457. https://doi.org/10.1016/J.MEDENGPHY.2014.02.010
    172. Giannitelli SM, Accoto D, Trombetta M, Rainer A (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10:580–594. https://doi.org/10.1016/J.ACTBIO.2013.10.024
    173. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomater Silver Jubil Compend 175–189. https://doi.org/10.1016/B978-008045154-1.50021-6
    174. Wheeler K, Karagianes M, Sump K (1983) Titanium alloys in surgical implants. ASTM International
    175. Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ (2010) Highly porous titanium scaffolds for orthopaedic applications. J Biomed Mater Res Part B Appl Biomater 95B:53–61. https://doi.org/10.1002/jbm.b.31682
    176. Cooper LF (2000) A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 84:522–534. https://doi.org/10.1067/MPR.2000.111966
    177. Hansson S, Norton M (1999) The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 32:829–836. https://doi.org/10.1016/S0021-9290(99)00058-5
    178. Colombo P, Degischer HP (2012) Highly porous metals and ceramics. Adv Eng Mater 14:1051. https://doi.org/10.1002/adem.201200347
    179. Knight A (2015) Cancer patient receives 3D printed ribs in world-first surgery - CSIROscope. https://blog.csiro.au/cancer-patient-receives-3d-printed-ribs-in-world-first-surgery/. Accessed 20 Feb 2019
    180. Carbon The perfect fit: Carbon + adidas collaborate to upend athletic footwear. https://www.carbon3d.com/stories/adidas/. Accessed 20 Feb 2019
    181. Yang L, Harrysson O, Cormier D, et al (2015) Additive Manufacturing of Metal Cellular Structures: Design and Fabrication. Jom 67:608–615. https://doi.org/10.1007/s11837-015-1322-y
    182. Yang L, Harrysson O, West H, Cormier D (2012) Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 60:3370–3379. https://doi.org/10.1016/J.ACTAMAT.2012.03.015
    183. Wadley HNG (2002) Cellular metals manufacturing. In: Advanced Engineering Materials. pp 726–733
    184. Valdevit L, Jacobsen AJ, Greer JR, Carter WB (2011) Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials. J Am Ceram Soc 94:s15–s34. https://doi.org/10.1111/j.1551-2916.2011.04599.x
    185. Sypeck DJ, Wadley HNG (2002) Cellular Metal Truss Core Sandwich Structures. Adv Eng Mater 4:759–764. https://doi.org/10.1002/1527-2648(20021014)4:10<759::AID-ADEM759>3.0.CO;2-A
    186. Kooistra GW, Wadley HNG (2007) Lattice truss structures from expanded metal sheet. Mater Des 28:507–514. https://doi.org/10.1016/J.MATDES.2005.08.013
    187. Deshpande V., Fleck N. (2001) Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct 38:6275–6305. https://doi.org/10.1016/S0020-7683(01)00103-2
    188. Chiras S, Mumm DR, Evans AG, et al (2002) The structural performance of near-optimized truss core panels. Int J Solids Struct 39:4093–4115. https://doi.org/10.1016/S0020-7683(02)00241-X
    189. Sypeck DJ, Wadley HNG (2001) Multifunctional microtruss laminates: Textile synthesis and properties. J Mater Res 16:890–897. https://doi.org/10.1557/JMR.2001.0117
    190. Queheillalt DT, Wadley HNG (2005) Cellular metal lattices with hollow trusses. Acta Mater 53:303–313. https://doi.org/10.1016/J.ACTAMAT.2004.09.024
    191. Queheillalt DT, Wadley HNG (2005) Pyramidal lattice truss structures with hollow trusses. Mater Sci Eng A 397:132–137. https://doi.org/10.1016/J.MSEA.2005.02.048
    192. Bitzer T (1997) Honeycomb technology : materials, design, manufacturing, applications and testing. Chapman & Hall
    193. Santorinaios M, Brooks W, Sutcliffe CJ, Mines RAW (2006) Crush behaviour of open cellular lattice structures manufactured using selective laser melting. In: WIT Transactions on the Built Environment. pp 481–490
    194. Gibson I, Rosen DW, Stucker B (2010) Additive Manufacturing Technologies. Springer, Boston, MA
    195. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd ed. Springer-Verlag New York
    196. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations. J Manuf Sci Eng 137:014001. https://doi.org/10.1115/1.4028725
    197. Conner BP, Manogharan GP, Martof AN, et al (2014) Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit Manuf 1–4:64–76. https://doi.org/10.1016/J.ADDMA.2014.08.005
    198. Gao W, Zhang Y, Ramanujan D, et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001
    199. Deloitte D (2018) Challenges of Additive Manufacturing. https://www2.deloitte.com/de/de/pages/operations/articles/challenges-additive-manufacturing.html#. Accessed 12 Jul 2019
    200. Ahn S, Montero M, Odell D, et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166
    201. Gibson I, Rosen DW, Stucker B (2010) Direct Digital Manufacturing. In: Additive Manufacturing Technologies. Springer US, Boston, MA, pp 378–399
    202. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al (2015) Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–52. https://doi.org/10.1126/science.aaa2397
    203. HP (2018) HP Multi Jet Fusion. https://www.additive.blog/knowledge-base/3d-printers/hp-multi-jet-fusion/. Accessed 2 Aug 2018
    204. Dean D, Wallace J, Siblani A, et al (2012) Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds. Virtual Phys Prototyp 7:13–24. https://doi.org/10.1080/17452759.2012.673152
    205. Vasiliev V V., Barynin VA, Razin AF (2012) Anisogrid composite lattice structures - Development and aerospace applications. Compos Struct 94:1117–1127. https://doi.org/10.1016/j.compstruct.2011.10.023
    206. Sui Q, Lai C, Fan H (2018) Buckling failure modes of one-dimensional lattice truss composite structures. Proc Inst Mech Eng Part G J Aerosp Eng 232:2565–2583. https://doi.org/10.1177/0954410017716194
    207. Sui Q, Fan H, Lai C (2015) Failure analysis of 1D lattice truss composite structure in uniaxial compression. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2015.09.003
    208. Elsayed MSA, Pasini D (2010) Multiscale structural design of columns made of regular octet-truss lattice material. Int J Solids Struct 47:1764–1774. https://doi.org/10.1016/j.ijsolstr.2010.03.003
    209. Gare JM (2004) Mechanics of Materials, 6th ed. Bill Stenquist, Belmont
    210. LIU ZS, SWADDIWUDHIPONG S, CUI FS, et al (2011) ANALYTICAL SOLUTIONS OF POLYMERIC GEL STRUCTURES UNDER BUCKLING AND WRINKLE. Int J Appl Mech 03:235–257. https://doi.org/10.1142/S1758825111000968
    211. Liu Z, Toh W, Ng TY (2015) Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels. Int J Appl Mech 07:1530001. https://doi.org/10.1142/S1758825115300011
    212. Shim J, Wang P, Bertoldi K (2015) Harnessing instability-induced pattern transformation to design tunable phononic crystals. Int J Solids Struct 58:52–61. https://doi.org/10.1016/J.IJSOLSTR.2014.12.018
    213. Lee J-H, Wang L, Boyce MC, Thomas EL (2012) Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Lett 12:4392–4396. https://doi.org/10.1021/nl302234f
    214. Wallach JC, Gibson LJ (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38:7181–7196. https://doi.org/10.1016/S0020-7683(00)00400-5
    215. Queheillalt DT, Wadley HNG (2009) Titanium alloy lattice truss structures. Mater Des 30:1966–1975. https://doi.org/10.1016/J.MATDES.2008.09.015
    216. Rashed MG, Ashraf M, Mines RAW, Hazell PJ (2016) Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater Des 95:518–533. https://doi.org/10.1016/j.matdes.2016.01.146
    217. Markkula S, Storck S, Burns D, Zupan M (2009) Compressive Behavior of Pyramidal, Tetrahedral, and Strut-Reinforced Tetrahedral ABS and Electroplated Cellular Solids. Adv Eng Mater 11:56–62. https://doi.org/10.1002/adem.200800284
    218. Feng L-J, Wu L-Z, Yu G-C (2016) An Hourglass truss lattice structure and its mechanical performances. Mater Des 99:581–591. https://doi.org/10.1016/J.MATDES.2016.03.100
    219. Ullah I, Brandt M, Feih S (2016) Failure and energy absorption characteristics of advanced 3D truss core structures. Mater Des 92:937–948. https://doi.org/10.1016/J.MATDES.2015.12.058
    220. Ullah I, Elambasseril J, Brandt M, Feih S (2014) Performance of bio-inspired Kagome truss core structures under compression and shear loading. Compos Struct 118:294–302. https://doi.org/10.1016/J.COMPSTRUCT.2014.07.036
    221. Daynes S, Feih S, Lu WF, Wei J (2017) Optimisation of functionally graded lattice structures using isostatic lines. Mater Des 127:215–223. https://doi.org/10.1016/J.MATDES.2017.04.082
    222. Clausen A, Aage N, Sigmund O (2016) Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load. Engineering 2:250–257. https://doi.org/10.1016/J.ENG.2016.02.006
    223. Szyszkowski W, Watson LG (1988) Optimization of the buckling load of columns and frames. Eng Struct 10:249–256. https://doi.org/10.1016/0141-0296(88)90046-6
    224. Manickarajah D, Xie YM, Steven GP (2000) Optimisation of columns and frames against buckling. Comput Struct 75:45–54. https://doi.org/10.1016/S0045-7949(99)00082-6
    225. Madah H, Amir O (2017) Truss optimization with buckling considerations using geometrically nonlinear beam modeling. Comput Struct 192:233–247. https://doi.org/10.1016/J.COMPSTRUC.2017.07.023
    226. Prager W, Taylor JE (1968) Problems of Optimal Structural Design. J Appl Mech 35:102. https://doi.org/10.1115/1.3601120
    227. Taylor JE (1967) The Strongest Column: An Energy Approach. J Appl Mech 34:486. https://doi.org/10.1115/1.3607710
    228. Schmitt M, Büscher TH, Gorb SN, Rajabi H (2018) How does a slender tibia resist buckling? Effect of material, structural and geometric characteristics on buckling behaviour of the hindleg tibia in stick insect postembryonic development. J Exp Biol 221:jeb173047. https://doi.org/10.1242/jeb.173047
    229. Bertoldi K, Reis PM, Willshaw S, Mullin T (2010) Negative Poisson’s Ratio Behavior Induced by an Elastic Instability. Adv Mater 22:361–366. https://doi.org/10.1002/adma.200901956
    230. Willshaw S, Mullin T (2012) Pattern switching in two and three-dimensional soft solids. Soft Matter 8:1747–1750. https://doi.org/10.1039/C1SM06765F
    231. Florijn B, Coulais C, van Hecke M (2014) Programmable Mechanical Metamaterials. Phys Rev Lett 113:175503. https://doi.org/10.1103/PhysRevLett.113.175503
    232. Pihler-Puzović D, Hazel AL, Mullin T (2016) Buckling of a holey column. Soft Matter 12:7112–7118. https://doi.org/10.1039/C6SM00948D
    233. Haghpanah B, Papadopoulos J, Mousanezhad D, et al (2014) Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state. Proc R Soc A Math Phys Eng Sci 470:20130856–20130856. https://doi.org/10.1098/rspa.2013.0856
    234. Amendola A, Smith CJ, Goodall R, et al (2016) Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Compos Struct 142:254–262. https://doi.org/10.1016/J.COMPSTRUCT.2016.01.091
    235. Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117:72–83. https://doi.org/10.1016/J.MATDES.2016.12.067
    236. Adam GAO, Zimmer D (2014) Design for Additive Manufacturing—Element transitions and aggregated structures. CIRP J Manuf Sci Technol 7:20–28. https://doi.org/10.1016/J.CIRPJ.2013.10.001
    237. Thompson MK, Moroni G;, Vaneker T;, et al (2016) Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. C I R P Annals, 24. CIRP Ann Technol 65:737–760. https://doi.org/10.1016/j.cirp.2016.05.004
    238. Doubrovski E, Verlinden J, Horvath I (2012) First steps towards collaboratively edited design for additive manufacturing knowledge. In: Solid Freeform Fabrication Symposium. University of Texas at Austin, Texas, pp 891–901
    239. Hascoet J, Ponche R, Kerbrat O (2011) From functional specifications to optimized CAD model: proposition of a new DFAM methodology. In: Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME, pp 767–472
    240. Ponche R, Kerbrat O, Mognol P, Hascoet J-Y (2014) A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process. Robot Comput Integr Manuf 30:389–398. https://doi.org/10.1016/J.RCIM.2013.12.001
    241. Seepersad CC (2014) Challenges and Opportunities in Design for Additive Manufacturing. 3D Print Addit Manuf 1:10–13. https://doi.org/10.1089/3dp.2013.0006
    242. Gausemeier J, Echterhoff N, Kokoschka M, Wall M (2011) Thinking ahead the future of additive manufacturing–analysis of promising industries. Pederborn
    243. Rosen DW (2007) Design for additive manufacturing: a method to explore unexplored regions of the design space. In: Eighteenth Annual Solid Freeform Fabrication Symposium. University of Texas at Austin, Austin, pp 402–415
    244. ANSYS (2017) Additive Manufacturing Simulation | ANSYS. https://www.ansys.com/products/structures/additive-manufacturing. Accessed 18 Jun 2019
    245. Dassault Systèmes (2018) CATIA 3DExperience. https://www.3ds.com/products-services/catia/. Accessed 18 Jun 2019
    246. PTC (2011) 3D CAD Software | Creo. https://www.ptc.com/en/products/cad/creo. Accessed 18 Jun 2019
    247. Dassault Systems (2018) Solidworks. https://www.solidworks.com/. Accessed 18 Jun 2019
    248. Materialise (2017) Materialise Mimics. https://www.materialise.com/en/medical/software/mimics. Accessed 18 Jun 2019
    249. Wang H, Rosen DW (2002) Parametric Modeling Method for Truss Structures. In: 22nd Computers and Information in Engineering Conference. ASME, Quebec, pp 759–767
    250. Rosen D, Wang H (2001) Computer-aided design methods for additive fabrication of truss structures (Master’s thesis). Georgia Institute of Technology
    251. Chu J, Engelbrecht S, Graf G, Rosen DW (2010) A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyp J 16:275–283. https://doi.org/10.1108/13552541011049298
    252. Chen VCP, Tsui K-L, Barton RR, Meckesheimer M (2006) A review on design, modeling and applications of computer experiments. IIE Trans 38:273–291. https://doi.org/10.1080/07408170500232495
    253. Dressler MM (2009) Art of Surface Interpolation (Doctoral Dissertation). KUNSTAT
    254. Sakata S, Ashida F, Zako M (2004) An efficient algorithm for Kriging approximation and optimization with large-scale sampling data. Comput Methods Appl Mech Eng 193:385–404. https://doi.org/10.1016/J.CMA.2003.10.006
    255. K3DSurf : 3d surface generator. http://k3dsurf.sourceforge.net/. Accessed 21 Feb 2019
    256. Within Medical | Medical 3D Printing Software & Implant Design | Autodesk. https://www.autodesk.com/products/within-medical/overview. Accessed 21 Feb 2019
    257. Hyperwork. https://web.altair.com/altair-acquires-simsolid. Accessed 21 Feb 2019
    258. Autodesk Additive Manufacturing and Design Software | Netfabb. https://www.autodesk.com/products/netfabb/overview. Accessed 21 Feb 2019
    259. Synopsys 3D Image Processing. https://www.synopsys.com/simpleware.html. Accessed 21 Feb 2019
    260. Materialise Materialise | 3D Printing Innovators. https://www.materialise.com/. Accessed 21 Feb 2019
    261. PARAMOUNTIND. https://www.paramountind.com/. Accessed 21 Feb 2019
    262. Paramatters. https://paramatters.com/. Accessed 21 Feb 2019
    263. Chen Y, Epstein D (2006) A Mesh-Based Geometric Modeling Method for General Structures. In: 26th Computers and Information in Engineering Conference. ASME, pp 269–281
    264. Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2003) Weight-increasing effect of topology simplification. Struct Multidiscip Optim 25:459–465. https://doi.org/10.1007/s00158-003-0334-3
    265. Bendsoe M, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer Sci Bus Media
    266. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224. https://doi.org/10.1016/0045-7825(88)90086-2
    267. Starly B (2006) Biomimetic design and fabrication of tissue engineered scaffolds using computer aided tissue engineering (Doctoral Dissertation). Drexel University
    268. Gabbrielli R (2009) Foam geometry and structural design of porous material (Doctoral Dissertation). University of Bath
    269. Gabbrielli R, Turner IG, Bowen CR (2007) Development of Modelling Methods for Materials to be Used as Bone Substitutes. Key Eng Mater 361:903–906. https://doi.org/10.4028/www.scientific.net/KEM.361-363.903
    270. Pasko A, Vilbrandt T, Fryazinov O, Adzhiev V (2010) Procedural Function-Based Spatial Microstructures. In: 2010 Shape Modeling International Conference. IEEE, pp 47–56
    271. Pasko A, Fryazinov O, Vilbrandt T, et al (2011) Procedural function-based modelling of volumetric microstructures. Graph Models 73:165–181. https://doi.org/10.1016/J.GMOD.2011.03.001
    272. Tao W, Leu MC (2016) Design of lattice structure for additive manufacturing. In: International Symposium on Flexible Automation (ISFA). IEEE, pp 325–332
    273. Nazir A, Abate KM, Kumar A, Jeng J-Y (2019) A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol 1–22. https://doi.org/10.1007/s00170-019-04085-3
    274. ANSYS (2015) Engineering Simulation & 3D Design Software. https://www.ansys.com/. Accessed 3 Oct 2019
    275. Rackliffe ME, Jensen DW, Lucas WK (2006) Local and global buckling of ultra-lightweight IsoTruss® structures. Compos Sci Technol 66:283–288. https://doi.org/10.1016/j.compscitech.2005.04.038
    276. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/J.PROMFG.2017.07.148
    277. Sniderman, B., Mahto, M., & Cotteleer MJ (2016) Industry 4.0 and manufacturing ecosystems Exploring the world of connected enterprises
    278. Wang L, Wang G (2016) Big Data in Cyber-Physical Systems, Digital Manufacturing and Industry 4.0. Int J Eng Manuf 4:1–8. https://doi.org/10.5815/ijem.2016.04.01
    279. Chen D, Heyer S, Ibbotson S, et al (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625. https://doi.org/10.1016/J.JCLEPRO.2015.05.009
    280. Lipson H, Kurman M (2013) Fabricated : the new world of 3D printing
    281. Caligiana G, Francia D, Liverani A (2017) CAD-CAM integration for 3D Hybrid Manufacturing. Springer, Cham, pp 329–337
    282. Varotsis AB (2018) Introduction to Injection Molding. https://www.3dhubs.com/knowledge-base/injection-molding-manufacturing-technology-explained. Accessed 20 Jul 2019
    283. Sealy MP, Madireddy G, Williams RE, et al (2018) Hybrid Processes in Additive Manufacturing. J Manuf Sci Eng 140:13. https://doi.org/10.1115/1.4038644
    284. Strong D, Kay M, Conner B, et al (2018) Hybrid manufacturing – integrating traditional manufacturers with additive manufacturing (AM) supply chain. Addit Manuf 21:159–173. https://doi.org/10.1016/J.ADDMA.2018.03.010
    285. Jeng J-Y, Lin M-C (2001) Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J Mater Process Technol 110:98–103. https://doi.org/10.1016/S0924-0136(00)00850-5
    286. Brown D, Li C, Liu ZY, et al (2018) Surface integrity of Inconel 718 by hybrid selective laser melting and milling. Virtual Phys Prototyp 13:26–31. https://doi.org/10.1080/17452759.2017.1392681
    287. Lorenz KA, Jones JB, Wimpenny DI, Jackson MR (2015) A Review of Hybrid Manufacturing. In: Solid Freeform Fabrication Conference Proceedings. pp 96–108
    288. Cherrington M, Claypole TC, Deganello D, et al (2011) Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J Mater Chem 21:7562. https://doi.org/10.1039/c1jm10630a
    289. Denneulin A, Blayo A, Neuman C, Bras J (2011) Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J Nanoparticle Res 13:3815–3823. https://doi.org/10.1007/s11051-011-0306-2
    290. Määttänen A, Ihalainen P, Pulkkinen P, et al (2012) Inkjet-Printed Gold Electrodes on Paper: Characterization and Functionalization. ACS Appl Mater Interfaces 4:955–964. https://doi.org/10.1021/am201609w
    291. Tobjörk D, Aarnio H, Pulkkinen P, et al (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955. https://doi.org/10.1016/J.TSF.2011.10.017
    292. Wünscher S, Abbel R, Perelaer J, Schubert US (2014) Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J Mater Chem C 2:10232–10261. https://doi.org/10.1039/C4TC01820F
    293. Xaar (1990) Xaar’s inkjet technologies and printheads are used all over the world. https://www.xaar.com/en/about/. Accessed 4 Aug 2018
    294. Xconomy (2018) Desktop Metal, Backed By $97M, Unveils Its First Metal 3D Printers. https://www.xconomy.com/boston/2017/04/25/desktop-metal-backed-by-97m-unveils-its-first-metal-3d-printers/. Accessed 4 Aug 2018
    295. Desktop Metal (2018) Production. https://www.desktopmetal.com/products/production/. Accessed 4 Aug 2018
    296. HP (2018) HP Jet Fusion 3D 4200 Printing Solution. http://h20195.www2.hp.com/v2/GetDocument.aspx?docname=4AA6-4892ENA. Accessed 21 Dec 2018
    297. Sinterit (2018) Lisa. https://www.sinterit.com/sinterit-lisa/. Accessed 21 Dec 2018
    298. Techlock Corporation (2019) Durometer. https://teclock.co.jp/ja/product/handy-durometer/. Accessed 2 May 2019
    299. Mueller J, Courty D, Spielhofer M, et al (2017) Mechanical Properties of Interfaces in Inkjet 3D Printed Single- and Multi-Material Parts. 3D Print Addit Manuf 4:193–199. https://doi.org/10.1089/3dp.2017.0038
    300. Gornet T, Davis K, … TS-SF, 2002 U (2002) Characterization of selective laser sintering materials to determine process stability. In: Solid Freeform Fabrication Symposium. pp 546–553
    301. Fayazfar H, Salarian M, Rogalsky A, et al (2018) A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater Des 144:98–128. https://doi.org/10.1016/J.MATDES.2018.02.018
    302. 3D Systems (1983) 3D Printers For Manufacturing And More. https://www.3dsystems.com/3d-printers. Accessed 7 Sep 2018
    303. Voxeljet (1995) Industrial 3D printing solutions. https://www.voxeljet.com/. Accessed 7 Sep 2018
    304. ExOne (2018) 3D Printing Materials. https://www.exone.com/Resources/Materials. Accessed 7 Sep 2018
    305. Cima M, Yoo J, Khanuja S, Sachs E. (1993) Structural ceramic components by 3D printing. In: International Solid Freeform Fabrication Symposium. pp 40–50
    306. Uhland SA, Holman RK, Morissette S, et al (2001) Strength of Green Ceramics with Low Binder Content. J Am Ceram Soc 84:2809–2818. https://doi.org/10.1111/j.1151-2916.2001.tb01098.x
    307. Gibson I, Rosen D, Stucker B (2015) Binder Jetting. In: Additive Manufacturing Technologies. Springer New York, New York, NY, pp 205–218
    308. Williams C (2008) Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure. Georgia Institute of Technology
    309. Arcam (2018) EBM-Built Materials. http://www.arcam.com/technology/ electron-beam-melting/materials/. Accessed 4 Sep 2018
    310. Sachs E, Cima M, Williams P, et al (1992) Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. J Eng Ind 114:481. https://doi.org/10.1115/1.2900701
    311. Sutton, H. W (1989) Microwave Processing of Ceramic Materials. Am Ceram Soc Bull 68:376–386
    312. Katz JD (1992) Microwave Sintering of Ceramics. Annu Rev Mater Sci 22:153–170. https://doi.org/10.1146/annurev.ms.22.080192.001101
    313. Fang Y, Agrawal DK, Roy DM, Roy R (1995) Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering. Mater Lett 23:147–151
    314. Cheng JP, Agrawal DK, Komarneni S, et al (1997) Microwave processing of WC-Co composities and ferroic titanates. Mater Res Innov 1:44–52. https://doi.org/10.1007/s100190050017
    315. Roy R, Agrawal D, Cheng J, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 399:668–670. https://doi.org/10.1038/21390
    316. Agrawal D (2013) Microwave sintering of metal powders. Adv Powder Metall 361–379. https://doi.org/10.1533/9780857098900.3.361
    317. El Khaled D, Novas N, Gazquez JA, Manzano-Agugliaro F (2018) Microwave dielectric heating: Applications on metals processing. Renew Sustain Energy Rev 82:2880–2892. https://doi.org/10.1016/J.RSER.2017.10.043
    318. Sharma P, Pandey PM (2018) Rapid manufacturing of biodegradable pure iron scaffold using amalgamation of three-dimensional printing and pressureless microwave sintering. Proc Inst Mech Eng Part C J Mech Eng Sci 233:1876–95. https://doi.org/10.1177/0954406218778304
    319. Gupta M, Leong EWW (2007) Microwaves and Metals. John Wiley & Sons
    320. Wang Y, Zhao YF (2017) Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process. Procedia Manuf 10:779–790. https://doi.org/10.1016/J.PROMFG.2017.07.077
    321. Francois MM, Sun A, King WE, et al (2017) Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr Opin Solid State Mater Sci 21:198–206. https://doi.org/10.1016/J.COSSMS.2016.12.001
    322. O’Connor HJ, Dickson AN, Dowling DP (2018) Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Addit Manuf 22:381–387. https://doi.org/10.1016/J.ADDMA.2018.05.035
    323. ASTM Additive manufacturing standards structure
    324. Palma T, Munther M, Damasus P, et al (2019) Multiscale mechanical and tribological characterizations of additively manufactured polyamide 12 parts with different print orientations. J Manuf Process 40:76–83. https://doi.org/10.1016/J.JMAPRO.2019.03.004
    325. Morales-Planas S, Minguella-Canela J, Lluma-Fuentes J, et al (2018) Multi Jet Fusion PA12 Manufacturing Parameters for Watertightness, Strength and Tolerances. Materials (Basel) 11:1472. https://doi.org/10.3390/ma11081472
    326. Johnson CG, Jain U, Hazel AL, et al (2017) On the buckling of an elastic holey column. Proc R Soc A Math Phys Eng Sci 473:20170477. https://doi.org/10.1098/rspa.2017.0477
    327. Coulais C, Overvelde JTB, Lubbers LA, et al (2015) Discontinuous Buckling of Wide Beams and Metabeams. Phys Rev Lett 115:044301. https://doi.org/10.1103/PhysRevLett.115.044301
    328. Karam GN, Gibson LJ (1995) Elastic buckling of cylindrical shells with elastic cores—II. Experiments. Int J Solids Struct 32:1285–1306. https://doi.org/10.1016/0020-7683(94)00148-P
    329. Zhang L, Feih S, Daynes S, et al (2018) Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf 23:505–515. https://doi.org/10.1016/j.addma.2018.08.007
    330. Gibson LJ, Harley BA, Ashby MF (2010) Cellular materials in nature and medicine. Cambridge University Press, Cambridge
    331. Gu J, Cheng S (2016) Shear effect on buckling of cellular columns subjected to axially compressed load. Thin-Walled Struct 98:416–420. https://doi.org/10.1016/J.TWS.2015.10.019
    332. Spadoni A, Ruzzene M, Scarpa F (2005) Global and local linear buckling behavior of a chiral cellular structure. Phys status solidi 242:695–709. https://doi.org/10.1002/pssb.200460387
    333. Hutchinson JW, Koiter WT (1970) Postbuckling Theory. Appl Mech Rev 23:1353–1366
    334. Bažant ZP, Cedolin L (2010) Stability of Structures. World Scientific
    335. Li Y-W, Elishakoff I, Starnes JH, Bushnell D (1997) Effect of the thickness variation and initial imperfection on buckling of composite cylindrical shells: Asymptotic analysis and numerical results by BOSOR4 and PANDA2. Int J Solids Struct 34:3755–3767. https://doi.org/10.1016/S0020-7683(96)00230-2
    336. Schenk CA, Schuëller GI (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Non Linear Mech 38:1119–1132. https://doi.org/10.1016/S0020-7462(02)00057-4
    337. Albertin U, Wunderlich W (2000) Buckling Design of Imperfect Spherical Shells. In: Proceedings of the International Conference IASS-IACM . ISASR-NTUA , pp 1–20
    338. Guo L, Yang S, Jiao H (2013) Behavior of thin-walled circular hollow section tubes subjected to bending. Thin-Walled Struct 73:281–289. https://doi.org/10.1016/J.TWS.2013.08.014
    339. MTS (2010) Electromechanical universal testing system. https://www.mts.com/en/products/producttype/test-systems/load-frames-uniaxial/universal/electromechanical/index.htm. Accessed 14 Jul 2019

    QR CODE