簡易檢索 / 詳目顯示

研究生: 王陽融
Yang-Jung Wang
論文名稱: 錐狀結構之塑膠製地下雨水貯留設施力學性質實驗與數值模擬
Experiment and Numerical Simulation of Mechanical Properties of Underground Plastic Modular Rainwater Tank with Conical Structure
指導教授: 何嘉浚
Chia-Chun Ho
口試委員: 楊國鑫
Kuo-Hsin Yang
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 低衝擊開發地下雨水貯留設施塑料模塊有限元素法(PLAXIS)
外文關鍵詞: Low lmpact development, underground rainwater storage tank, plastic modular, PLAXIS
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來臺灣在都市地區使用了眾多雨水貯留設施,其中又以能最大化利用都市空間並同時達到有效貯水效果的地下雨水貯留設施最為廣泛使用,傳統的地下貯留設施材料多以混凝土建置,但近期已開發出一種超輕型塑料模塊,其以強度高、貯留能力好以及施工成本低等優點漸漸取代傳統混凝土槽體,但由於全球缺乏對於這類塑料模塊的受力機制與破壞行為之研究,並無探討塑料模塊貯留設施於實際應用時的結構-土壤互制行為,因此可參考的文獻相當不足,導致這類型設施的不當設計發生破壞的案例時有所聞。
    目前臺灣對於該設施的設計,皆是參考臺灣下水道協會訂定的規範建議,以一單元的抗壓試驗之極限強度值折減70%作為設施的設計強度,而側向土壓力可以採用主動或靜止土壓力係數計算,但以一單元的強度作為整體設施的設計強度明顯與實際情況不符,且並無說明側向土壓力係數選用的原因是否合理,因此本論文欲針對上述進行研究,以臺灣較常使用的錐體狀塑料模塊為主,探討錐體狀塑料模塊於實際應用情況,在不同堆疊高度及周圍有土壤包覆時的強度表現,以及作用在槽體的側向土壓力係數與規範建議方式的合理性。
    本研究將使用大地工程數值分析軟體PLAXIS進行模擬分析。以單一塑料模塊抗壓試驗結果進行軟體材料參數的率定,並使用完成率定之材料參數,建置不同堆疊高度與有土壤圍壓作用之貯留結構體模型並於軟體中測試抗壓強度。而研究結果顯示,結構體強度確實會因為堆疊高度而減弱,並能通過各模擬結果回歸出堆疊高度與強度折減係數的公式,亦可應用於不同單元高度的塑料模塊,同時證實給予圍束條件也會影響結構體強度,而根據模擬結果,貯留槽周圍若是中等緊密砂,則結構體強度能增強約1.8倍,並得知在地下第一層及第二層的塑料模塊受到的應力最大,相對變形量高因此破壞幾乎都發生在此區;而第二層以下的塑料模塊,隨著深度的增加受到的應力越小,變形量也相對小,因此不易發生破壞,說明土壤能有效分散應力,使埋設越深的塑料模塊越不會受到地表面的加載影響,若日後要加強貯留槽的抗壓強度,可以僅針對地下兩層內的塑料模塊進行結構的補強。


    In recent years, Taiwan has used many rainwater storage facilities in urban areas. Among them, underground rainwater storage facilities that can maximize the use of urban space and achieve effective water storage are the most widely used. Traditional underground storage facilities are mostly constructed of concrete. Recently, however, an ultra-light plastic module has been developed, which gradually replaces the traditional concrete tank with the advantages of high strength, good storage capacity, and low construction cost. However, because there is very little research on the force mechanism and damage behavior of such plastic modules in the world, there is no research on the structure-soil interaction behavior of plastic module storage facilities in practical applications, so the literature that can be referred to is quite insufficient. There have been many cases of vandalism resulting from the improper design of these types of facilities.
    At present, the design of this facility in Taiwan refers to the normative recommendations formulated by the Taiwan Sewers Association. The ultimate strength value of the compressive test of a unit is reduced by 70% as the design strength of the facility. The lateral earth pressure can be calculated by the active or static earth pressure coefficient, but the design strength of the whole facility is obviously inconsistent with the actual situation, and it does not explain whether the reason for the selection of the lateral earth pressure coefficient is reasonable. This paper intends to conduct research on the above, focusing on the cone-shaped plastic modules that are commonly used in Taiwan, to discuss the practical application of cone-shaped plastic modules, the strength performance of different stacking heights, and buried in the soil.
    This research will use PLAXIS, a numerical analysis software for geotechnical engineering, for simulation analysis. Use the compression test results of a single plastic module to calibrate the parameters of the software material, and use the material parameters that have been calibrated to build different stack heights of the storage structure, and storage tank with soil confining pressure and test compressive strength in software. The research results show that the strength of the structure is indeed weakened by the stacking height, and the formula for the stacking height and the strength reduction coefficient can be regressed through various simulation results, and it can also be applied to plastic modules with different unit heights. The confining pressure also affects the strength of the structure. According to the simulation results, if the medium compact sand is around the storage tank, the strength of the structure can be enhanced by about 1.8 times, and it is known that the plastic modules on the first and second underground layers are subject to the greatest stress the relative deformation is high, so the damage almost occurs in this area; while the plastic modules below the second layer have less stress and less deformation as the depth increases, so the damage is not easy to occur, indicating that the soil can be effectively dispersed stress. And If the compressive strength of the storage tank is to be strengthened in the future, only just the plastic modules in the two underground layers can be reinforced.

    摘要 i ABSTRACT iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 論文架構 4 第二章 文獻回顧 5 2.1 塑料模塊簡介 5 2.1.1 背景 5 2.1.2 塑料模塊地下貯留設施適用場所 7 2.1.3 塑料模塊地下貯留設施類型 8 2.1.4 塑料模塊種類 9 2.1.5 施工流程 10 2.1.6 塑膠製地下雨水貯留設施破壞形式 12 2.2 台灣雨水貯留設施規範 14 2.3 塑料模塊室內試驗 19 2.3.1 國外相關研究 19 2.3.2 國內相關研究 22 2.4 數值分析相關研究 26 2.4.1 二維與三維分析之比較 26 2.4.2 塑料模塊數值分析 27 2.4.3 PLAXIS研究案例 28 第三章 塑料模塊抗壓試驗 30 3.1 試驗材料 30 3.2 試驗設備 31 3.3 試驗方法 32 3.4 試驗結果 33 第四章 數值分析之模擬 38 4.1 PLAXIS軟體簡介 38 4.1.1 土壤組成模式 38 4.1.2 結構元素組成模式 39 4.2 塑料模塊參數率定 42 4.2.1 塑料模塊模型之建構 42 4.2.2 塑料模塊參數 43 4.2.3 模擬抗壓數值模型建構 46 4.2.4 參數靈敏度分析 46 4.2.5 參數率定結果 53 4.3 塑料模塊堆疊情況之抗壓模擬 55 4.3.1 模擬堆疊抗壓數值模型建構 55 4.3.2 模擬結果 57 4.4 塑料模塊實際使用情況模擬 59 4.4.1 模擬假設條件 59 4.4.2 數值模型之建構 60 4.4.3 土壤參數 63 4.4.4 模擬結果 65 第五章 結論與建議 69 5.1 結論 69 5.2 建議 70 參考文獻 71

    [1] 台灣下水道協會(2018),雨水貯留滲透設施(塑膠製品)技術手冊第三版,台灣下水道協會。
    [2] 內政部建築研究所(2017),雨水貯留設施系統設計與產品模組化技術探討。
    [3] 內政部營建署(2021),建築技術規則建築設計施工編。
    [4] 方怡婷(2015),應用PLAXIS分析連續壁深開挖變形之探討-高雄小港工程案例,碩士論文,國立高雄第一科技大學。
    [5] 何嘉浚(2020),塑膠製雨水地下貯留設施力學機制探討,國立臺灣科技大學。
    [6] 邱德維(2018),回收環保塑膠應用於低衝擊開發與最佳管理作業的工程應用討論,土木水利,45(6),第9至13頁。
    [7] 吳淵洵、阮仲如(2021),雨水貯留單元之工程性能驗證,技師期刊,第93期,第24-31頁。
    [8] 周子健(2018),以離散元素及田口直交表分析預切溝槽誘發水下淤泥連續坍滑之成效,碩士論文,國立臺灣科技大學。
    [9] 施瑋庭(2014),應用地工合成材加勁擋土牆防治土石流之研究,碩士論文,國立臺灣大學。
    [10] 張家維(2019),塑膠製儲水箱工程特性之尺度效應,碩士論文,國立屏東科技大學。
    [11] 張智軒、楊雅晴(2021),雨水貯留磚於台灣實績案例分享,技師期刊,第93期,第32-39頁。
    [12] 張智軒、楊燦銘(2021),雨水貯留磚於「海綿城市」之應用技術,技師期刊,第93期,第19-23頁。
    [13] 游百崧(2014),垂直排水帶預壓密工法最佳化配置-以「北投士林科技園區填土整地工程(第一期)」為探討案例,碩士論文,國立臺北科技大學。
    [14] 築綠生態有限公司(2020),海綿城市|洪水管理方案。
    [15] 築綠生態有限公司(2021),打造海綿城市創建築綠家園-海綿城市系列。
    [16] 鍾文瀚(2014),雨水積磚設計與模擬,碩士論文,國立成功大學。
    [17] 日本雨水貯留浸透技術協会(2018),プラスチック製地下貯留浸透施設技術指針。
    [18] Alan, E., Eric, R., Erik, B., Karin, H., Monica, L., Trevor, J. (2019). Stadium Neighborhood Underground Parkade and Water Storage UBC Social Ecological Economic Development Studies Sustainability Program.
    [19] Burns, M. J., Fletcher, T. D., Walsh, C. J., Ladson, A. R., Hatt, B. E. (2012). Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and Urban Plan, 105(2012), p.230-240.
    [20] Bentley. (2018). PLAXIS 3D Reference Manual.
    [21] Chowdhury, R. A., Iqbal, M. I., Sarker, D., Anwar, A. M. M. T. (2015). Finite Element Analysis of Fully Buried Underground Water Tank by SAP2000.
    [22] CIRIA. (2016). Structural and geotechnical design of modular geocellular drainage systems. Construction Industry Research and Information Association.
    [23] Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L. N., Ghisi, E., Rahman, A., Furumai, H., Han, M. (2017). Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research, 115(15), p.195-209.
    [24] Dalton, J., Allan, K. (2021). Understanding soil-module system behaviour to provide sustainable solutions in pavement engineering New Zealand Geotechnical Society Symposium.
    [25] Emerson, C. H., Traver, R. (2008). Multi-Year and Seasonal Variation of Infiltration From Stormwater Best Management Practice. Journal of Irrigation and Drainage Engineering, 134(5).
    [26] Egyir, S., Arthur, S., Brown, C. (2016). Rainwater as a domestic water supplement in Scotland: attitudes and perceptions. British Journal of Environment and Climate Change, 6(3), p.160-169.
    [27] Filshill, A. S. (2010). Long term structural design of geosynthetic stormwater chambers and the use of nanocompsites to enhance their performance. (Doctor), Drexel University.
    [28] Han, J., Yang, X., Leshchinsky, D., Parsons, R. L. (2008). Behavior of Geocell-Reinforced Sand Under a Vertical Load. International Geosynthetics Society, 2045(1), p.95-101.
    [29] Hegde, A.,Sitharam, T. G. (2015). Joint Strength and Wall Deformation Characteristics of a Single-Cell Geocell Subjected to Uniaxial Compression. International Journal of Geomechanics, 15(5).
    [30] MacLean, S. B., Vytiniotis, A., Sykora, D. W. (2020). Laboratory Testing and Engineering Analysis of an Underground Stormwater Detention System. Geo-Congress, p.60-69.
    [31] Nallanathel, M., Ramesh, B., Jagadeesh, L. (2018). EFFECTIVE UTILIZATION OF STAAD PRO IN THE DESIGN AND ANALYSIS OF WATER TANK. International Journal of Pure and Applied Mathematics, 119(17).
    [32] Nimade, A., Soni, N., Varma, G., Joshi, V., Chaurasia, S. (2018). Parametric Study of Underground Water Tank using FEM. International Journal of Science Technology & Engineering, 4(09).
    [33] Qureshi, L. A., Amin, K., Janjua, N. S., Tahir, F. (2013). Comparison of 2D & 3D finite element analysis of underground water tank based on soil structure interaction using GTS. New Developments in Structural Engineering and Construction.
    [34] Rezania, M., Cullen, P., Javadi, A., Nezhad, M. M. (2010). Compressive behavior of honeycomb modular drainage tanks. International Conference on Physical Modelling in Geotechnics.
    [35] Ren, G., Tofful, D. (2011). Settlement of Large Underground Rainwater Tanks Under Time Dependant Storage Loads. The Electronic Journal of Geotechnical Engineering, 16(1), p.1161-1173.
    [36] STRAIN GAUGES. (2020). Tokyo Measuring Instruments Lab.
    [37] Tam, W. Y. Vivian, Tam, L., Zeng, S. X. (2010). Cost effectiveness and tradeoff on the use of rainwater tank: An empirical study in Australian residential decision-making. Resources, Conservation and Recycling, 54(3), p.178-186.
    [38] Tripathi, S., Dubey, S., Maurya, M. C. (2020). Time History Analysis of Underground Water Tank for Different Seismic Intensity. International Journal of Science and Research, 9(6), p.963-967.
    [39] Wilson, S., Bray, R., Cooper, P. (2004). Sustainable drainage systems - Hydraulic, Structural and Water Quality Advice. CIRIA.
    [40] Wagh, K. K., Ghuge, A. K., Gaidhane, D. N., Gandhe, G. R. (2021). Design and Analysis of underground water tank by using Staad Pro. International Research Journal of Engineering and Technology, 08(04).
    [41] Yang, X., Han, J., Parsons, R. L., Leshchinsky, D. (2010). Three-dimensional numerical modeling of single geocellreinforced sand. Architecture, Civil Engineering, Environment, 4(2), p.233-240.

    QR CODE