簡易檢索 / 詳目顯示

研究生: 梁瑞庭
Jui-Ting Liang
論文名稱: 探討氣體霧化法製備之高熵合金粉末特性及其於表面改質之應用性
Study on Gas-Atomized High-Entropy Alloy Powders and its Potential in Surface Modification
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 李志偉
曾堯宣
丘群
許如宏
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 112
中文關鍵詞: 高熵合金AlCoCrFeNi粉末Al0.5CoCrFeNi2粉末相穩定性表面處理退火處理電漿噴塗濺鍍法
外文關鍵詞: High entropy alloy, AlCoCrFeNi powder, Al0.5CoCrFeNi2 powder, phase stability, surface treatment, annealing process, plasma spray, sputter
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,高熵合金面臨了一個大問題,當擴散速度過慢時會導致鑄造過程中產生缺陷,所以當擴散速度緩慢時,冷卻速度應該也必須比平時慢,否則將會產生裂縫及偏析。為了克服這個問題,本研究採用了高熵合金粉末,藉由降低合金的尺寸解決冷卻速度的問題。此外,粉末可以通過不同的製程應用於表面改質,而高熵合金因為其可以透過調整成份來獲得不同的特性,故其適用於不同需求的表面改質。
    在此篇研究中,利用氣體霧化法取代傳統的球磨法製備AlCoCrFeNi及Al0.5CoCrFeNi2高熵合金粉末,並對其施以退火處理,探討退火溫度及時間對於微觀結構、晶體結構、相變化以及機械性質的影響。
    藉由氣體霧化法製備之AlCoCrFeNi保留了其初始相BCC,然而,在經過900℃的退火處理超過3小時之後,FCC相及σ相開始出現,透過XRD及EBSD的分析後,結果顯示此合金的主要基底BCC相為FeCo的化合物,此外,FCC及σ相分別為AlNi3及Fe0.5Cr0.5化合物,析出的FCC及σ相能夠顯著的提高此合金之機械性質。為了解決此合金會在高溫環境下產生相變化的問題,此篇研究進一步改變了鋁及鎳的含量而得到了另一個合金系統Al0.5CoCrFeNi2,預期其由單一的FCC固溶體所組成,在經過1000℃且長時間的熱處理後,由NiAl及Fe所組成的BCC結構開始產生,但其依舊能在最初時保留其初始相。
    此外,在本研究中,使用電漿噴塗法及濺鍍法將Al0.5CoCrFeNi2高熵合金粉末製備成兩種不同型態的鍍層,結果顯示在電漿噴塗實驗中,較強的功率能夠促使粉末完全熔化,從而使得塗層具有較少的缺陷,包括:空隙及未熔化完全的粉末。當電流從500A提升到750A時,塗層的元素分佈依舊保持均勻,相組成依舊維持在最初的FCC結構,而硬度隨著電流的提升由HV206上升到HV271,這是因為上述缺陷的減少使得塗層變得較為緻密。而在濺鍍塗層的結果仍然顯示出其與初始粉末一樣由純FCC相所組成。在實驗過程中,沉積速度及鍍層的密度會受到工作壓力及基板偏壓影響。在高壓力的環境下,能量會損失使得緻密度降低。此外,基板偏壓則會影響到金屬離子的擴散效率,因此可以藉由提高偏壓獲得品質較佳的鍍層。本研究所採用的兩種塗層製備方法都能夠獲得相同結構之鍍層,這也表明Al0.5CoCrFeNi2高熵合金能夠在高能量的環境表現出良好的穩定性,有利於之後在工業上的發展。


    Recently, HEAs bulk face a big issue about sluggish diffusion which would cause the defect forming during casting. While the diffusion rate is slow, the cooling rate should be slower than usual. If not, the crack and segregation may occur. To overcome this problem, the HEAs powders were utilized in this study. By reducing the dimension of HEAs alloy, the sluggish cooling rate could be solved. Moreover, the powders could be applied on surface modification with various needs by using different processes; and HEAs alloy is a suitable material for surface modification duo to its variability which could be adjusted via tuning the element composition. In this study, AlCoCrFeNi and Al0.5CoCrFeNi2 high-entropy alloy (HEA) powders were fabricated by gas atomization process instead of ball milling method and the effect of annealing temperature and durations on the microstructure, crystal structure, phase evolution and mechanical properties were investigated.
    The as-atomized AlCoCrFeNi powder could retain the initial phase which is composed of pure BCC phase. However, the FCC and minor sigma phases could obtain by conducting the annealing process. After the heat treatment at 900℃ for over 3 hours, the phase constitution was investigated by XRD and EBSD. The results exhibited that BCC is a FeCo compound which is the base of this HEA system, furthermore, FCC and sigma phases are measured as AlNi3 and Fe0.5Cr0.5 compounds, respectively, and the precipitated FCC and sigma phase could hence significantly increase the mechanical performance. In order to solve the problem of the phase stability which means the phase transition would occur at the high temperature, the contents of aluminum and nickel were further modified to achieve Al0.5CoCrFeNi2 alloy, it was expected to have a single FCC solid solution alloy. After the heat treatment at 1000℃ for long time, the BCC crystal structure of NiAl and Fe was formed, but it still could keep the initial phase in the beginning.
    Furthermore, Al0.5CoCrFeNi2 powders were utilized to deposit two different coatings by plasma spray and sputtering processes in this study. In plasma spray process, the results indicated that higher working power could induce the powders fully smelted, resulting in a coating layer with fewer defects, including voids and un-melted powders. With the increase current from 500 to 750A, the element distribution retained uniform throughout the coating layer and the phase constitution stayed at the initial FCC phase. The hardness of dense spraying coatings possessed an increasing trend from HV206 to HV271 with working currents. Then, the analysis of sputtering coatings still displayed that the phase constitution of pure FCC was corresponding to the raw powders. The deposition rate and density were influenced by the sputtering pressure and substrate bias. High pressure could cause energy loss, resulting in the lower density. Moreover, the substrate bias would raise the diffusion rate of metal ions to obtain the thin films with high hardness. The coating prepared by these two methods possessed the same phase constitution, which indicated that Al0.5CoCrFeNi2 high entropy alloy could exhibit excellent stability in high-energy occasions. This also facilitates the subsequent development of the industry.

    Acknowledgement Abstract 摘要 Content Figure Captions Table Captions 1. Introduction 2. Literature review 2.1 The definition and development of high entropy alloys 2.2 Four core effects of high entropy alloys 2.2.1 High entropy effect 2.2.2 Sluggish diffusion effect 2.2.3 Lattice distortion effect 2.2.4 Cocktail effect 2.3 The addition effect on high entropy alloys 2.3.1 The effect of Al addition 2.3.2 The effect of Ni addition 2.4 Prediction of phase formation of high entropy alloys by thermodynamic calculations 2.4.1 The formation of solid solution 2.4.2 The formation of crystal structure 2.5 The developing trend and challenge of high entropy alloy 2.6 The low dimensional high entropy alloys 2.7 The preparing process of coating 2.7.1 Thermal spray 2.7.2 Sputtering process 2.8 Summary of literature review 3. Experimental procedure 3.1 The preparation of high entropy alloy powder 3.1.1 The heat treatment for AlCoCrFeNi high entropy alloy powder 3.1.2 The heat treatment for Al0.5CoCrFeNi2 high entropy alloy powder 3.1.3 The pre-treatment of powders for the following analysis 3.2 The thermal spray process 3.3 The sputtering process 3.4 The analysis instrument used in this study 3.4.1 Optical microscope (OM) 3.4.2 Field Emission Scanning Electron Microscope (FE-SEM) 3.4.3 Energy-Dispersive X-ray spectroscopy (EDS) 3.4.4 Electron Backscatter Diffraction (EBSD) 3.4.5 X-ray diffractometer (XRD) 3.4.6 Nanoindenter 4. Results and discussion 4.1 The analysis of AlCoCrFeNi powders 4.2 The analysis of Al0.5CoCrFeNi2 powders 4.3 The thermodynamic calculation of AlCoCrFeNi and Al0.5CoCrFeNi2 HEAs 4.3.1 The formation of solid solution 4.3.2 The prediction of crystal structure formation by VEC calculations 4.4 The analysis of plasma-sprayed Al0.5CoCrFeNi2 coatings 4.5 The analysis of sputtering Al0.5CoCrFeNi2 thin films 5. Conclusions 6. Future work References

    [1] Huang K.H., Yeh J.W. (1996). A study on the multicomponent alloy systems containing equal-mole elements. National Tsing Hua University, Hsinchu.
    [2] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Chang S.Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
    [3] Yeh J.W (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
    [4] Yeh J.W., Chen S.K., Chen Y.L. (2007). Novel alloy concept, challenges and opportunities of high-entropy alloys. In Frontiers in the design of materials (pp. 31-47). CRC Press.
    [5] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T. Adv. Eng. Mater. 6 (2004) 299–303.
    [6] Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A 2004;375–377:213–8.
    [7] Zhang C., Zhang F., Diao H., Gao M. C., Tang Z., Poplawsky J. D., Liaw P. K. (2016). Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials & Design, 109, 425-433.
    [8] Ma D., Tan H., Zhang Y., Li Y. Correlation between glass formation and type of eutectic coupled zone in eutectic alloys. Mater Trans 2003;44(10):2007–10.
    [9] Zhang Y., Yang X., Liaw P.K., Alloy design and properties optimization of high-entropy alloys. JOM 2012;64(7):830–8.
    [10] Zhang Y., Ma S.G., Liaw P.K., Tang Z, Cheng YQ. Broad guidelines in predicting phase formation of high-entropy alloys, MRS Communications, submitted for publication.
    [11] Ma S.G., Zhang Y., Liaw P.K., Damping behaviors of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, J Alloy Compd, in preparation.
    [12] Zhang Y., Zuo T.T., Liaw P.K., Cheng Y.Q. High-entropy alloys with high saturation magnetization and electrical resistivity. Sci Rep 2013:3:1455
    [13] Yang X., Zhang Y., Liaw P.K., Microstructure and compressive properties of TiZrNbMoVx high-entropy alloys. Proc Eng 2012:292–8.
    [14] Yeh J.W., Recent progress in high-entropy alloys. Presentation at Changsha meeting; 2011.
    [15] Zhang Y., Wang X.F., Chen G.L., Qiao Y., Effect of Ti on microstructure and properties of CoCrCuFeNiTix high-entropy alloys. Ann Chim Sci Matér 2006;31(6):699–709.
    [16] Yeh J.W., Lin S.J., Chin T.S., Gan J.Y., Chen S.K., Shun T.T., et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A 2004;35(8):2533–6.
    [17] Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett 2007;90(18):181904.
    [18] Wang X.F., Zhang Y., Qiao Y., Chen G.L., Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007;15(3):357–62.
    [19] Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011; 19: 698–706.
    [20] Singh S., Wanderka N., Murty B.S., Glatzel U., Banhart J., Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 2011; 59: 182–90.
    [21] Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K., Refractory high-entropy alloys. Intermetallics 2010;18(9):1758–65.
    [22] Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K., Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 2008;10(6):534–8.
    [23] Li C., Li J.C., Zhao M., Jiang Q., Effect of alloying elements on microstructure and properties of multiprincipal elements high entropy alloys. J Alloy Compd 2009;475(1–2):752–7.
    [24] Liang, J. T., Cheng, K. C., Chen, S. H., Chen, J. H., Stadler, S., Li, C. L., & Hsueh, C. H. (2020). Study on the continuous phase evolution and physical properties of gas-atomized high-entropy alloy powders. Materials Research Express, 7(2), 026545.
    [25] Zhang Y., Chen G.L., Gan C.L., Phase change and mechanical behaviors of TixCoCrFeNiCu1yAly high entropy alloys. J ASTM Int 2010;7(5):102527.
    [26] Zhang Y., Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. Mater Sci Forum 2010;654–656:1058–61.
    [27] Zhang Y., Zhou Y.J., Solid solution formation criteria for high entropy alloys. Mater Sci Forum 2007;561–565:1731–9.
    [28] Zhang Y., Zhou Y.J., Hui X.D., Wang M.L., Chen G.L., Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci China, Ser G 2008;51(4):427–37.
    [29] Cai H., Zhang H., Zheng H., Soft magnetic devices applied for low zero excursion four-mode ring laser gyro. IEEE Trans Magn 2007;43(6):2686–8.
    [30] Zhang H., Pan Y., He Y., Jiao H., Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating. Appl Surf Sci 2011;257(6):2259–63.
    [31] Lin C., Tsai H., Bor H., Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics 2010; 18: 1244–50.
    [32] Lin C., Tsai H. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 2011;19(3):288–94.
    [33] Liang, J. T., Cheng, K. C., Chen, Y. C., Chiu, S. M., Chiu, C., Lee, J. W., & Chen, S. H. (2020). Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings. Surface and Coatings Technology, 403, 126411.
    [34] Chiu, S. M., Lin, T. T., Sammy, R. K., Kipkirui, N. G., Lin, Y. Q., Liang, J. T., & Chen, S. H. (2022). Investigation of phase constitution and stability of gas-atomized Al0. 5CoCrFeNi2 high-entropy alloy powders. Materials Chemistry and Physics, 275, 125194.
    [35] Canton B., Audebert F., Galano M., Kim K.B., Warren P.J. Novel multicomponent alloys. Warren J Metastable Nanocryst Mater 2005;24–25:1–6.
    [36] Tong C.J., Chen Y.L., Chen S.K., Yeh J.W., Shun T.T., Tsau C.H., et al. Microstructural characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans 2005;36A:881-93.
    [37] Tong C.J., Chen M.R., Chen S.K., Yeh J.W., Shun T.T., Lin S.J., et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans 2005;36A:1263-71.
    [38] Wu J.M., Lin S.J., Yeh J.W., Chen S.K., Huang Y.S., Chen H.C. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 2006; 261: 513-9.
    [39] Tung C.C., Yeh J.W., Shun T.T., Chen S.K., Huang Y.S., Chen H.C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett 2007; 61:1-5.
    [40] Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Comp 2009; 485: L31-4.
    [41] Zhang K.B., Fu Z.Y., Zhang J.Y., Wang W.M., Wang H., Zhang Q.J., et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater Sci Eng A 2009; 508:214-9.
    [42] Wang X.F., Zhang Y., Qiao Y., Chen G.L. Novel microstructure of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007; 15:357-62.
    [43] Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-377:213-8.
    [44] Chen Y.L., Hu Y.H., Tsai C.W., Hsieh C.A., Kuo S.W., Yeh J.W., et al. Alloying behavior of binary to octonary alloys based on CuNiAlCoCrFeTiMo during mechanical alloying. J Alloys Comp 2009; 477:696-705.
    [45] Chen Y.L., Hu Y.H., Hsieh C.A., Yeh J.W., Chen S.K. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Comp 2009; 481:768-75.
    [46] Yeh J.W., Chang S.Y., Hong Y.D., Chen S.K., Lin S.J. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multiprincipal elements. Mater Chem Phys 2007; 103:41-6.
    [47] Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L. Microstructural and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys. Mater Sci Eng A 2007;454-455:260-5.
    [48] Yeh, J.W. Chim, A. – Sci. Mater. 31 (2006) 633.
    [49] Zhao K., Xia X.X., Bai H.Y., Zhao D.Q., Wang W.H. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett 2011; 98:141913.
    [50] Yang X., Zhang Y. Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys. In: Zhang YF, Su CW, Xia H, Xiao PF, editors. Advanced materials and processing 2010, proceedings of the 6th international conference on ICAMP, Yunnan, 19–3 July 2010.
    [51] Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science, 49(3-4), 537-560.
    [52] Basak C.B., Krishnan M., Kumar R., Abdullah K.K., Anantharaman S. (2014). Characterization and process evaluation of Ni–Ti–Fe shape memory alloy macro-spheres directly fabricated via rotating electrode process. Journal of Alloys and Compounds, 597, 15-20.
    [53] Uporov, S., Bykov, V., Pryanichnikov, S., Shubin, A., & Uporova, N. (2017). Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics, 83, 1-8.
    [54] Liang, J. T., Cheng, K. C., & Chen, S. H. (2019). Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders. Journal of Alloys and Compounds, 803, 484-490.
    [55] Tang, Z., Senkov, O. N., Parish, C. M., Zhang, C., Zhang, F., Santodonato, L. J., ... & Liaw, P. K. (2015). Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Materials Science and Engineering: A, 647, 229-240.
    [56] Kai, W., Cheng, F. P., Chien, F. C., Lin, Y. R., Chen, D., Kai, J. J., ... & Wang, C. J. (2019). The oxidation behavior of a Ni2FeCoCrAl0.5 high-entropy superalloy in O2-containing environments. Corrosion Science, 158, 108093.
    [57] Kai, W., Cheng, F. P., Lin, Y. R., Chuang, C. W., Huang, R. T., Chen, D., ... & Wang, C. J. (2020). The oxidation behavior of Ni2FeCoCrAlx high-entropy alloys in dry air. Journal of Alloys and Compounds, 155518.
    [58] Kai, W., Li, C. C., Cheng, F. P., Chu, K. P., Huang, R. T., Tsay, L. W., & Kai, J. J. (2016). The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950° C in various oxygen-containing atmospheres. Corrosion Science, 108, 209-214.
    [59] Hsu, W. L., Murakami, H., Yeh, J. W., Yeh, A. C., & Shimoda, K. (2017). On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surface and Coatings Technology, 316, 71-74.
    [60] Wang, Y., Yang, Y., Yang, H., Zhang, M., Ma, S., & Qiao, J. (2018). Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Materials Chemistry and Physics, 210, 233-239.
    [61] Wang, Z., Kulkarni, A., Deshpande, S., Nakamura, T., & Herman, H. (2003). Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Materialia, 51(18), 5319-5334.
    [62] Liang, J. T., Cheng, K. C., Chen, Y. C., Chiu, S. M., Chiu, C., Lee, J. W., & Chen, S. H. (2020). Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings. Surface and Coatings Technology, 403, 126411.
    [63] Khan, N. A., Akhavan, B., Zhou, C., Zhou, H., Chang, L., Wang, Y., ... & Liu, Z. (2020). RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition. Journal of Alloys and Compounds, 155348.
    [64] Braeckman, B. R., Boydens, F., Hidalgo, H., Dutheil, P., Jullien, M., Thomann, A. L., & Depla, D. (2015). High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71-76.
    [65] Khan, N. A., Akhavan, B., Zhou, H., Chang, L., Wang, Y., Sun, L., ... & Liu, Z. (2019). High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 495, 143560.
    [66] Chen, Y. Y., Hung, S. B., Wang, C. J., Wei, W. C., & Lee, J. W. (2019). High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films. Surface and Coatings Technology, 375, 854-863.
    [67] Hung, S. B., Wang, C. J., Chen, Y. Y., Lee, J. W., & Li, C. L. (2019). Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surface and Coatings Technology, 375, 802-809.
    [68] Kao Y.F., Chen T.J., Chen S.K., Yeh J.W. (2009). Microstructure and mechanical property of as-cast, homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57-64.
    [69] Li C., Li J.C., Zhao M., Jiang Q. (2010). Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 504, S515-S518.
    [70] Wang W.R., Wang W.L., Wang S.C., Tsai Y.C., Lai C.H., Yeh J.W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51.
    [71] Zhuang Y.X., Xue H.D., Chen Z.Y., Hu Z.Y., He J.C. (2013). Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Materials Science and Engineering: A, 572, 30-35.
    [72] Sheng H.F., Gong M., Peng L.M. (2013). Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Materials Science and Engineering: A, 567, 14-20.
    [73] Senkov, O. N., Senkova, S. V., Woodward, C., & Miracle, D. B. (2013). Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), 1545-1557.
    [74] Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93.
    [75] Ding, P., Mao, A., Zhang, X., Jin, X., Wang, B., Liu, M., & Gu, X. (2017). Preparation, characterization and properties of multicomponent AlCoCrFeNi2. 1 powder by gas atomization method. Journal of Alloys and Compounds, 721, 609-614.
    [76] Zhang, C., Zhang, F., Diao, H., Gao, M. C., Tang, Z., Poplawsky, J. D., & Liaw, P. K. (2016). Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials & Design, 109, 425-433.
    [77] Gromov, V. E., Konovalov, S. V., Ivanov, Y. F., & Osintsev, K. A. (2021). Structure and properties of high-entropy alloys (p. 110). Springer International Publishing.
    [78] Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K. (2008). Solid‐solution phase formation rules for multi‐component alloys. Advanced engineering materials, 10(6), 534-538.
    [79] Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238.
    [80] Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 109(10), 103505.
    [81] Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., ... & Fu, H. (2018). Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Materialia, 144, 129-137.
    [82] Si C., Tang X., Zhang X., Wang J., Wu W. (2017). Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process. Materials & Design, 118, 66-74.
    [83] AWS Committee on Thermal Spraying, Thermal Spraying: Practice, Theory and Application, American Welding Society, Miami, FL, 1985.
    [84] Pawlowski, L. (2008). The science and engineering of thermal spray coatings. John Wiley & Sons.
    [85] Herman, H., & Sampath, S. (1996). Thermal spray coatings. In Metallurgical and ceramic protective coatings (pp. 261-289). Springer, Dordrecht.
    [86] Longo F. N., Second national conference on thermal spray, American Society for Metals, USA, 1984.
    [87] Clare J. H., Metal Handbook, Ninth Edition, American Society for Metals, USA, pp. 361, 1982.
    [88] Sobolev, V. V., Guilemany, J. M., Martı́n, A. J., Calero, J. A., & Vilarrubias, P. (1998). Modelling of the in-flight behaviour of stainless-steel powder particles in high velocity oxy-fuel spraying. Journal of Materials Processing Technology, 79(1-3), 213-216.
    [89] Petrov, I., Barna, P. B., Hultman, L., & Greene, J. E. (2003). Microstructural evolution during film growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21(5), S117-S128.
    [90] Navid, A. A., & Hodge, A. M. (2012). Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure. Materials Science and Engineering: A, 536, 49-56.
    [91] Zhang, C., Wanyu, D. I. N. G., Hualin, W., Weiping, C., & Dongying, J. U. (2009). Influences of working pressure on properties for TiO2 films deposited by DC pulse magnetron sputtering. Journal of Environmental Sciences, 21(6), 741-744.
    [92] Ren, H., & Sosnowski, M. (2008). Tantalum thin films deposited by ion assisted magnetron sputtering. Thin Solid Films, 516(8), 1898-1905.
    [93] Lee, M. K., Kang, H. S., Kim, W. W., Kim, J. S., & Lee, W. J. (1997). Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating. Journal of materials research, 12(9), 2393-2400.
    [94] Shen, W. J., Tsai, M. H., Chang, Y. S., & Yeh, J. W. (2012). Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti) Nx coatings. Thin Solid Films, 520(19), 6183-6188.
    [95] Bubenzer, A., Dischler, B., Brandt, G., & Koidl, P. (1983). rf‐plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications. Journal of applied physics, 54(8), 4590-4595.
    [96] Mattox, D. M. (1989). Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7(3), 1105-1114.

    無法下載圖示 全文公開日期 2025/11/24 (校內網路)
    全文公開日期 2025/11/24 (校外網路)
    全文公開日期 2025/11/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE