簡易檢索 / 詳目顯示

研究生: 李威震
Wei-Chen Li
論文名稱: 400 nm~1000 nm波段0階與1階光柵離軸三件式高光譜儀之優化及評估
System Optimization and Evaluation of Three-Piece Off-Axis Hyper-Spectrometer with the 0th and 1st Order Grating from 400 nm to 1000 nm
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Li
沈志霖
Chih-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 174
中文關鍵詞: 離軸三件式高光譜儀調制轉移函數光譜解析度
外文關鍵詞: Three-Piece Off-Axis Hyper-Spectrometer, modulation transfer function, spectral resolution
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立400~1000 nm波段之離軸三件式高光譜儀,系統參數包含光源的波段400~1000 nm、中心波長700 nm及光源的發散角(FOV),光柵0階繞射、1階繞射及光柵條紋間距,透鏡的曲率半徑、厚度與擺放傾角度,參數導入CODE V進行優化,優化後的Code V系統模組,匯至TracePro進行Ray Tracing模擬分析。
    本研究分成兩組偵測面,一組底片像素數規格128 × 128、像素大小1 μm × 1 μm,另一組以市售偵測器VNIR U-130 像素數規格128 × 128、像素大小4.8 μm × 4.8 μm兩種規格分析,再利用這兩個規格各分析點光源及狹縫光源,點光源大小為X方向1 nm × Y方向1 nm,二種狹縫光源大小分別為X方向60 μm × Y方向20 μm及X方向100 μm × Y方向20 μm。
    為了分析波段的成像品質,因0階光柵沒有分光,0階光柵以中心波長700 nm進行光跡追蹤。1階光柵分別對波長400 nm、550 nm、700 nm、850 nm及1000 nm進行光跡追蹤。本研究利用Code V及TracePro模擬的光跡數據,再利用Matlab分別計算出半高全寬(FWHM)、聚焦縱深(DoF)、調制轉移函數(MTF)、線寬度(Pitch)及解析度數據與其圖形。
    本文主要是透過優化光柵間距、透鏡的曲率半徑、透鏡的厚度和透鏡的擺放傾角來獲得最佳的離軸三件式高光譜儀。


    Design of a Three-Piece Off-Axis Hyper-Spectrometer used for 400~1000 nm wavebands is introduced in this thesis. The system parameters includ the wavebands, the central wavelength and the divergence anglet of light source, the diffraction orders and the pitch of grating, the curvature radius, thickness and the dip angle of the lens. The system parameters are imported into CODE V, the established CODE V system model will be optimized, and the optimized CODE V system model will be exported to the TracePro for Ray Tracing simulation and analysis.
    This study is divided into two detection surfaces, one is the negative, pixel number 128 × 128, pixel size 1 μm × 1 μm and the other is the commercially detector U-130, pixel number 128 × 128, pixel size 4.8 μm × 4.8 μm. These two detection surfaces are used to analyze with the point light source and slit light source. The size of point light source is 1 nm × 1 nm. The size of two slit light sources is 60 μm × 20 μm and 100 μm × 20 μm.
    In order to analyze the imaging quality of the wavebands, this study simulates and analyzes the Ray Tracing of the center wavelength 700 nm for the 0-order grating system. Because the 0-order grating system is not split, so this study simulates and analyzes the Ray Tracing of the wavebands 400~1000 nm for the 1-order grating. This paper gets the Ray Tracing data by simulation with Code V and TracePro, and then calculates the FWHM, DoF, MTF, Pitch, resolution data and graphics respectively with Matlab.
    This paper is mainly through optimization the pitch of grating, the curvature radius, thickness and the dip angle of the lens to get the optimal Hyper-Spectrometer system.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究進展 3 1.4 本文架構 3 第二章 原理探討及文獻研究 5 2.1 艾瑞盤(Airy Disk) 5 2.2 繞射極限(Diffraction Limit) 7 2.3 數值孔徑(Numerical Aperture) 7 2.4 光柵(Grating) 8 2.4.1 光柵方程式 8 2.4.2 光柵色散 9 2.4.3 光柵分辨率 10 2.5 半高全寬解析度(FWHM Resolution) 11 2.6 聚焦縱深(Depth of Focus, DoF) 12 2.7 調制轉移函數(Modulation Transfer Function) 13 2.8 光譜解析度(Spectral Resolution) 15 第三章 建立Code V光學系統模組 17 3.1 選定市售凹球面鏡與凸球面鏡 17 3.2 選定市售偵測器 18 3.3 建立Code V模組元件 18 3.4 建立Code V模組之流程 19 3.5 零階光柵系統參數之優化 23 3.6 一階光柵系統參數之優化 26 第四章 光跡追蹤(Ray Tracing)參數設計及建模分析 30 4.1 建立物件模型 30 4.2 建立光柵 31 4.3 建立光源 31 4.4 建立偵測面 31 4.5 輻照度圖分析 33 4.6 偵測器與光源規格 39 第五章 TracePro模擬結果 41 5.1 零階光柵模擬結果 41 5.1.1 底片+點光源模擬結果 41 5.1.2 底片+狹縫光源模擬結果 50 5.1.3 偵測器+點光源模擬結果 58 5.1.4 偵測器+狹縫光源模擬結果 67 5.2 一階光柵模擬結果分析 75 5.2.1 底片+點光源模擬結果 75 5.2.2 底片+狹縫光源模擬結果 95 5.2.3 偵測器+點光源模擬結果 112 5.2.4 偵測器+狹縫光源模擬結果 129 第六章 數據分析 145 6.1 零階光柵數據分析 145 6.2 一階光柵數據分析 146 第七章 結論 151 參考文獻 153 附錄A:Code V元件資料表 156

    [1] 徐百輝(2007),「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六
    期,第 13-19 頁。
    [2] Yuyao Chen, Wesley A. Britton, and Luca Dal Negro, “Design of infrared
    microspectrometer based on phase-modulated axilenses,” Applied Optics, vol. 59,
    issue 18, pp. 5532-5538, 2020.
    [3] Mingxu Piao, Bo Zhang, and Keyan Dong, “Design of achromatic annular folded lens
    with multilayer diffractive optics for the visible and near-IR wavebands,” Optics
    Express, vol. 28, issue 20, pp. 29076-29085, 2020.
    [4] A. A. Gowen, C. P. O'Donnell, P. J. Cullen et al., “Hyperspectral imaging - an
    emerging process analytical tool for food quality and safety control,” Trends in Food
    Science & Technology, vol. 18, no. 12, pp. 590-598, 2007.
    [5] Bekefi, George, Barrett, and Alan, Electromagnetic vibrations, waves, and radiation
    2nd, illustrated. MIT Press, 1977.
    [6] Airy, G. B., "On the diffraction of an object-glass with circular aperture, "
    Transactions of the Cambridge Philosophical Society, vol. 5, pp. 287, 2011.
    [7] M. Born and E. Wolf, Principles of Optics. Pergamon Press, 1965.
    [8] C. Mack, "Optical proximity effects," Microlithography World, vol. 5, no. 2, pp. 22-
    23, 1996.
    [9] 蘇育霆(2019),「可見光至近紅外波段高光譜影像儀微型化之優化設計」,碩士
    論文,國立台灣科技大學。
    [10] N. G. R. Broderick, and C. M. de Sterke, “Theory of grating superstructures,”
    Physical Review E, vol. 55, no. 3, pp. 3634-3646, 1997.
    [11] Xesús Prieto-Blanco, Carlos Montero-Orille, Héctor González-Núñez, et al.,
    154
    “Imaging with classical spherical diffraction grating:the quadrature configuration,”
    Journal of the Optical Society of America A, vol. 26, issue 11, pp. 2400-2409, 2009.
    [12] 杜坤璟(2019),「900-1700 nm 波段高光譜影像儀之系統優化及評估」,碩士論
    文,國立台灣科技大學。
    [13] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A tutorial on fast fourier sampling,”
    IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 57-66, 2008.
    [14] 徐郁茹(2018),「可見光至近紅外波段微型高光譜影像儀之設計與成像分析」,
    碩士論文,國立台灣科技大學。
    [15] Xin Shen and Bahram Javidi, “Large depth of focus dynamic micro integral imaging
    for optical see-through augmented reality display using a focus-tunable lens,” Applied
    Optics, vol. 57, issue 7, pp. B184-B189, 2018.
    [16] G. Boreman, “Modulation transfer funcion in optical and electro-optical Systems,”
    SPIE-The International Society for Optical Engineering, pp. 20-25, 2001.
    [17] Dongyue Yang, Guohua Wu, Junhui Li, et al., “Image recovery of ghost imaging with
    sparse spatial frequencies,” Applied Optics, vol. 59, issue 12, pp. 3760-3765, 2020.
    [18] Lei Yu, Hui Xue, and Jie-xiang Chen, “Dual concave grating anastigmatic
    spectrometer with high spectral resolution for remote sensing,” Applied Optics, vol.
    57, issue 33, pp. 9789-9796, 2018.
    [19] G. V. Vladimir, “Modern optics of Gaussian beams,” Physics-Uspekhi, vol. 55, no. 4,
    pp. 412, 2012.
    [20] P. Getreuer, “Survey of gaussian convolution algorithms,” Image Processing on Line,
    vol. 3, pp. 286-310, 2013.
    [21] Mertz L, “Concentric spectrographs,” Applied Optics, vol. 16, pp.3122-3124, 1977.
    [22] M.P. Chrisp, "Convex diffraction grating imaging spectrometer," U.S. Patent No.
    5,880,834, 1999.
    [23] X. Prieto-Blanco, C. Montero-Orille, B. Couce et al., “Analytical design of an offner
    imaging spectrometer,” Optics Express, vol. 14, no. 20, pp. 9156-9168, 2006.
    [24] Yu-Hang Shen, Zheng-Ji Ni, Yuan-Shen Huang, et al., “Analytical design of a highperforming +1st order diffraction convex grating imaging spectrometer,” Applied
    Optics, vol. 59, issue 12, pp. 3760-3765, 2020.
    [25] Augusto García-Valenzuela, Gabriel E. Sandoval-Romero, and Celia Sánchez-Pérez,
    “High-resolution optical angle sensors: approaching the diffraction limit to the
    sensitivity,” Applied Optics, vol. 43, issue 22, pp. 4311-4321, 2004.

    無法下載圖示 全文公開日期 2025/11/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE