簡易檢索 / 詳目顯示

研究生: 陳守約
Shou-Yue Chen
論文名稱: 基於光纖法布立-佩羅干涉儀之高解析度位移感測
Fiber-optic based Fabry-Perot Interferometry for high-resolution motion detection
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 法布立-佩羅干涉儀雙腔體位移感測高解析度
外文關鍵詞: Fabry-Perot Interferometer, Dual-cavity, motion detection, high resolution
相關次數: 點閱:251下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出並架設一個基於光纖法布立-佩羅干涉儀的高解析度及靈敏度的位移感測器,其目的為利用法布立-佩羅干涉儀解決奈米等級的精確度量測。此干涉儀腔體由光纖平行校正器與移動的反射鏡面組成,特別設計高效率的背向耦合。同時,利用雙腔體法布立-佩羅干涉儀擴大感測範圍,其概念為雙訊號的感測耦合。本論文比較了光纖校正器及單模光纖對於位移感測系統的影響,實驗數據表現出此光纖校正器位移感測在1500um的位移量內,達到2.08nm解析度及0.004V/nm的敏感度,並且在4mm移動量中擁有高穩定性。而單模光纖的系統表現出2.36nm的解析度與0.02V/nm的敏感度。本論文更進一步評估法布立-佩羅干涉儀之位移感測器,利用隨機信號與感測器分析之數據比對,得出高匹配的結果。實驗數據顯示當感測器工作於工作區的中心位置時,擁有最小的誤差為0.11nm,另一方面,平均誤差是7.58nm。角度偏移影響也在實驗中測試並證實,當鏡面傾角為一度時,光輸出功率下降3dB。未來改進的方向為感測器解析度的再現性,及響應圖的多重統計,使光纖法布立-佩羅干涉儀可以更精確地提供位移感測。


    I propose and demonstrate a highly-sensitive motion detection based on fiber Fabry-Perot interferometry (FFPI) with resolution below 100nm. The proposed FFPI sensor solves displacement detection with precision in nano-meter scale. The interferometer is based on a fiber-optic collimator, specially designed for efficient signal back-coupling, and a discrete moving reflective mirror forming the Fabry-Perot cavity. I also compare the fiber collimators with conventional single mode fiber system in this paper. To enhance the sensing range, I propose a dual-cavity fiber Fabry-Perot interferometer, the main idea based on the interference pattern of the two signals.
    Experimental results then showed that the proposed sensor is capable of sensing in a displacement range up to 1500um with resolution of 2.08nm, sensitivity of 0.004V/nm and stability within a wide area of 4mm. Meanwile, the single mode fiber system has resolution of 2.36nm with the sensitivity of 0.02V/nm. Furthermore, I evaluated the FFPI sensor with a random signal showing high correlation between reference and analyzed signal. The minimum error is 0.11nm when the sensor working in the center of working area, and average error is 7.58nm. Influence of the angular offset on FFPI performance is verified in the end of measurement.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Fiber-based Fabry-Perot interferometer . . . . . . . . . . . 4 2.2 Coherence condition . . . . . . . . . . . . . . . . . . . . 9 2.3 Fiber arm and end-facet back-reflection . . . . . . . . . . 11 2.4 Mirror arm and back-coupling efficiency . . . . . . . . . . 15 2.5 Dual-cavity fiber Fabry-Perot interferometer . . . . . . . . 20 3 FFPI simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Simulation of mirror angular misalignment . . . . . . . . 22 3.2 FPI beam propagation and reflection . . . . . . . . . . . . 25 4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1 Proposed FFPI configuration . . . . . . . . . . . . . . . . 28 4.2 Dual-cavity FFPI configuration . . . . . . . . . . . . . . . 31 5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 33 5.1 Configuration A - 4% mirror with a fiber collimator . . . . 35 5.2 Configuration B - 99% reflection mirror with PC fiber . . . 43 5.3 Comparison of two configurations . . . . . . . . . . . . . 47 5.4 Evaluation of the FFPI sensor using a random signal . . . 50 5.5 Dual-cavity FFPI performance . . . . . . . . . . . . . . . 53 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 58 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    [1] H. C. Seat and S. Pullteap, “An Extrinsic Fiber Fabry-Perot Interferometer
    for Dynamic Displacement Measurement,” 2007 International
    Conference on Mechatronics and Automation, Harbin, 2007, pp. 3025-
    3030.
    [2] C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, Rex E. Gerald, II, and J.
    Huang, “A Displacement Sensor With Centimeter Dynamic Range
    and Submicrometer Resolution Based on an Optical Interferometer,”
    in IEEE Sensors Journal, vol. 17, no. 17, pp. 5523-5528, 1 Sept.1,
    2017.
    [3] S. Khaliq, S. W. James, and R. P. Tatam, “Fiber-optic liquid-level
    sensor using a long-period grating,”Opt. Lett., vol. 26, no. 16, pp.
    1224–1226, Aug. 2001.
    [4] B. Yun, N. Chen and Y. Cui, “Highly Sensitive Liquid-Level Sensor
    Based on Etched Fiber Bragg Grating,”in IEEE Photonics Technology
    Letters, vol. 19, no. 21, pp. 1747-1749, Nov.1, 2007.
    [5] V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating
    sensors,”Opt. Lett., vol. 21, no. 9, pp. 692–694, May, 1996.
    [6] J. Chen, J. Zhou and Z. Jia, “High-Sensitivity Displacement Sensor
    Based on a Bent Fiber Mach–Zehnder Interferometer,”in IEEE Photonics
    Technology Letters, vol. 25, no. 23, pp. 2354-2357, Dec.1, 2013.
    [7] Q. Rong, X. Qiao, Y. Du, D. Feng, R. Wang, Y. Ma, H. Sun, M. Hu,
    and Z. Feng, “In-fiber quasi-Michelson interferometer with a core-
    59
    cladding-mode fiber end-face mirror,”Appl. Opt., vol. 52, no. 7, pp.
    1441–1447, Mar., 2013.
    [8] X. Zhou and Q. Yu, “Wide-Range Displacement Sensor Based on
    Fiber-Optic Fabry–Perot Interferometer for Subnanometer Measurement,”
    in IEEE Sensors Journal, vol. 11, no. 7, pp. 1602-1606, July
    2011.
    [9] Y. Li and W. Wu, “Research on Physical Parameter Measurement
    System of Fiber Fabry-Perot Interferometer,”2018 IEEE International
    Conference on Manipulation, Manufacturing and Measurement
    on the Nanoscale (3M-NANO), Hangzhou, pp. 377-381, 2018.
    [10] K.T.V. Grattan, T. Sun, “Fiber optic sensor technology: an
    overview,”in Sensors and Actuators A: Physical, vol. 82, Issues 1-
    3, pp. 40-61, 2000.
    [11] D. Stacey, “The Fabry-Perot Interferometer. History, Theory, Practice
    and Applications,”in Journal of Modern Optics, vol. 37(7), pp.
    1279-1280, 1990.
    [12] M. J. Gander, W.N. Macpherson, J.S. Barton, R.L. Reuben, J.D.C.
    Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure
    sensors in aerodynamics applications,”in IEEE Sensors Journal, vol.
    3, no. 1, pp. 102-107, Feb. 2003.
    [13] Eugene Hecht, Optics fifth edition, chapter 9, Person Education Limited,
    ISBN 10: 1-292-09693-4, Essex, England, 2017.
    [14] Eugene Hecht, Optics fifth edition, chapter 4, Person Education Limited,
    ISBN 10: 1-292-09693-4, Essex, England, 2017.
    [15] Rongqing Hui, Maurice O’Sullivan, Fiber Optic Measurement Techniques,
    chapter 2.2, Elsevier Inc., ISBN: 978-0-12-373865-3, Burlington,
    USA, 2009.
    [16] Jae Yong Lee, Jae Won Hahn, and Hai-Woong Lee, “Spatiospectral
    transmission of a plane-mirror Fabry-Perot interferometer with nonuniform
    finite-size diffraction beam illuminations,”in Journal of the Optical
    Society of America. A, vol. 19, no.5, pp. 973-984, 2002.
    [17] Rongqing Hui, Maurice O’Sullivan, Fiber Optic Measurement Techniques,
    chapter 2.5, Elsevier Inc., ISBN: 978-0-12-373865-3, Burlington,
    USA, 2009.
    [18] Ali, A. Hussein, Sahib N. Abdul–Wahid, and Hussein A. Mohammed.
    “Analysis of Laser Linewidth Measurements Based on
    Fabry Perot Interferometer System.”in International Journal of Engineering
    and Computer Science, vol.3838, no.60, pp.1223, 2013.
    [19] Rongqing Hui, Maurice O’Sullivan, Fiber Optic Measurement Techniques,
    chapter 2, Elsevier Inc., ISBN: 978-0-12-373865-3, Burlington,
    USA, 2009.

    QR CODE