簡易檢索 / 詳目顯示

研究生: 陳亭君
Ting-Chun Chen
論文名稱: 以專利強度分析探討日本取像鏡頭競爭公司之研發策略
Formulation of Technological Research and Development Strategy by Patent Strength Analysis on Optical Objective lens of Japanese Competitors
指導教授: 劉國讚
Kuo-Tsan Liu
口試委員: 廖承威
Cheng-Wei Liao
管中徽
Chung-Huei Kuan
劉國讚
Kuo-Tsan Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 專利研究所
Graduate Institute of Patent
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 取像鏡頭專利分析專利指標專利強度F-term布局策略
外文關鍵詞: Objective Lens, F-term
相關次數: 點閱:173下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鏡頭產業應用之領域廣泛,且對於許多裝置,如數位相機、手機、監視器等皆為重要元件。藉由專利強度分析,探討公司之研發狀況,以提供未來研發策略以及布局策略之建議。首先,以日本專利資料庫為主,先分析整個產業在日本的現況,並找出日本前十大主要專利申請人,對針對各申請人之專利布局狀況,以F-term日本專利分類號進行專利指標之計算,了解主要申請人間之目前現況以及優劣勢。接著,找出主要申請人向美國申請之取像鏡頭相關專利,分析申請人之申請狀況,再以CPC分類號與被引證數進行專利指標之計算,了解申請人於美國之布局情形。最後,分別分析十大申請人於日本與美國之專利情況,並給予未來研發建議以及國外布局策略之建議。
    本研究分析結果可得以下結論:
    1.目前在取像鏡頭領域,產業上已經相當成熟,且維持一定之需求量,根據日本專利數量,十大主要申請人依序為Canon、Nikon、Fujifilm、Olympus、Konica Minolta、AAC、Ricoh、Panasonic、Sony、Tamron,其中AAC為中國公司,其餘為日商公司。
    2.根據日本專利強度,Canon、Nikon、Fujifilm相對有較強之鏡頭設計能力;Olympus、Konica Minolta、Panasonic、Sony相對布局較廣之技術;Tamron之專利相對涉及較廣之技術;Ricoh相對在專利內容投入較多之創新程度。
    3.根據美國專利分析,從美國專利數量與日本專利數量之比例來看,各申請人選案至美國申請的比例差異不大。從美國專利指標來看,美國公司技術能力指標,在日本有布局的技術領域同樣在美國也有布局,但從美國專利案件所涉及的技術廣度來看,日本申請人可能須多注意專利內容之布局。


    In this study, through the analysis of patent strength about “Optical objective lens” patent, the research and development status of the company is discussed to provide suggestions for future research and development strategies and layout strategies. First, based on the Japanese patent database, we first analyze the current situation of the entire industry in Japan, and find out the top ten major patent applicants in Japan. It can be understanding the current application situation and advantages and disadvantages among the major patent applicants by using Japanese Patent Classification(F-term) to calculates patent indicators. Next, find out Optical Objectives lens patent of major applicants in USPTO, and analyze the applicant's application status. It can be understanding the application strategy in United States by using CPC classification to calculates patent indicators. Finally, it analyzes the patent application situation of the top ten applicants in Japan and the United States and gives suggestions on future research and development and strategies.
    Results of the study are shown below:
    1.At present, in the field of optical objectives lens, this industry is quite mature and maintains a certain demand. According to the number of Japanese patents, the top ten major applicants are: Canon, Nikon, Fujifilm, Olympus, Konica Minolta, AAC, Ricoh, Panasonic, Sony, Tamron in order.
    2.According to the strength of Japanese patents, Canon, Nikon, and Fujifilm have relatively strong lens design capabilities. Olympus, Konica Minolta, Panasonic, and Sony have relatively wide-ranging technologies. Tamron’s patents involve relatively wide-ranging technologies. Ricoh’s patents are relatively great innovation in content.
    3.According to the analysis of U.S. patents, from the ratio of the number of U.S. patents to the number of Japanese patents is similar, it can be derived that the Japanese applicant’s strategies is similar. From the perspective of US patent indicators, Japanese applicants may need to pay more attention to the layout of patent content.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 技術發展歷史 3 1.2.2 技術介紹 4 1.2.3 專利分類系統 7 1.3 文獻探討 9 1.3.1 專利分析相關期刊論文 9 1.3.2 專利分析相關學位論文 13 1.3.3 專利分析二維圖表 14 1.4 研究方法與流程 15 1.4.1 研究方法 15 1.4.2 研究流程 16 1.4.3 研究限制 17 第2章 資料蒐集與主要專利權人 18 2.1 前言 18 2.2 檢索策略與範圍界定 18 2.2.1 檢索策略 18 2.2.2 檢索式界定 19 2.3 歷年申請趨勢 21 2.4 主要申請人分析 22 2.4.1 主要申請人申請件數與趨勢 22 2.4.2 主要申請人簡介 24 2.4.3 主要申請人合作網絡 26 2.5 分類號計數分析 27 2.5.1 F-term出現頻率分析 27 2.5.2 IPC分析 29 第3章 競爭公司的日本專利強度 34 3.1 前言 34 3.2 創新度指標 35 3.3 案件技術廣度指標 39 3.3.1 以F-term計算案件技術廣度 39 3.3.2 以IPC計算案件技術廣度 42 3.4 取像鏡頭設計能力指標 45 3.4.1 以F-term計算取像鏡頭能力指標 45 3.4.2 以IPC計算取像鏡頭能力指標 61 3.5 跨技術領域能力指標 64 3.6 競爭公司相對優勢 70 3.7 小結 72 第4章 競爭公司美國專利布局強度分析 74 4.1 前言 74 4.2 美國專利檢索與資料蒐集 75 4.3 主要申請人申請趨勢分析 76 4.3.1 美國申請件數趨勢分析 76 4.3.2 美國申請案CPC分布情況 78 4.4 美國專利強度計算 81 4.4.1 公司技術廣度 82 4.4.2 案件技術廣度 85 4.5 被引證數 89 4.6 小結 91 第5章 結論與未來研究方向 93 5.1 競爭公司之日本專利之評價與研發建議 93 5.2 競爭公司之美國專利之評價與研發建議 95 5.3 日本取像鏡頭之整體研發與其他建議 97 5.4 未來研究方向 98 參考文獻 99

    一、 期刊論文
    [1] Daejung Kim, & Jieun Kim(2021). Is innovation design- or technology-driven? Citation as a measure of innovation pollination. World Patent Information,64, 102010. https://doi.org/10.1016/j.wpi.2020.102010
    [2] Dennis Verhoeven, Jurriën Bakker, & Reinhilde Veugelers(2016). Measuring technological novelty with patent-based indicators. Research Policy,45, 707-723. https://doi.org/10.1016/j.respol.2015.11.010
    [3] Eduardo Perez-Molina, & Fernando Loizides(2021). Novel data structure and visualization tool for studying technology evolution based on patent information: The DTFootprint and the TechSpectrogram. World Patent Information,64, 102009. https://doi.org/10.1016/j.wpi.2020.102009
    [4] Jeonghun Jee, Hyunjin Shin, Chulhyun Kim , & Sungjoo Lee(2021). Six different approaches to defining and identifying promising technology through patent analysis. Technology Analysis & Strategic Management, 28 May 2021. https://doi.org/10.1080/09537325.2021.1934437
    [5] Jiho Lee, Namuk Ko, Janghyeok Yoon, & Changho Son(2021). An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks. Technological Forecasting and Social Change, 168, 120746. https://doi.org/10.1016/j.techfore.2021.120746
    [6] Junichi Sakata, Katsuhiro Suzuki, & Jun Hosoya(2009). The analysis of research and development efficiency in Japanese companies in the field of fuel cells using patent data. R & D management, 39, 291-304. https://doi.org/10.1111/j.1467-9310.2009.00555.x
    [7] Kisik Song, Karp Soo Kim, & Sungjoo Lee, Discovering new technology opportunities based on patents: Text-mining and F-term analysis, Technovation, 60–61, 1-14. https://doi.org/10.1016/j.technovation.2017.03.001
    [8] Lafond, François, & Kim, Daniel(2019). Long-run dynamics of the U.S. patent classification system. J Evol Econ 29, 631–664. https://doi.org/10.1007/s00191-018-0603-3
    [9] La-yin WANG, & Dong ZHAO(2021). Cross-domain function analysis and trend study in Chinese construction industry based on patent semantic analysis. Technological Forecasting and Social Change,162, 120331. https://doi.org/10.1016/j.techfore.2020.120331
    [10] Mahmood H. Shubbak(2019). Advances in solar photovoltaics: Technology review and patent trends. Renewable and Sustainable Energy Reviews, 115, 109383. https://doi.org/10.1016/j.rser.2019.109383
    [11] Manuel Baumann et al(2021). Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy. Technological Forecasting and Social Change,165, 120505. https://doi.org/10.1016/j.techfore.2020.120505
    [12] Matti Karvonen, & Kimmo Klemola(2019). Identifying bioethanol technology generations from the patent data. World Patent Information,57, 25-34. https://doi.org/10.1016/j.wpi.2019.03.004
    [13] Mekyung Lee(2020). An analysis of the effects of artificial intelligence on electric vehicle technology innovation using patent data. World Patent Information,63, 102002. https://doi.org/10.1016/j.wpi.2020.102002
    [14] Schmoch, U. J. I. j. o. t. M. (1995). Evaluation of technological strategies of companies by means of MDS maps. International journal of technology Management, 10(4-6), 426-440. 10.1504/IJTM.1995.025635.
    [15] Serkan Altuntas,Turkay Dereli,& Andrew Kusiak(2015). Forecasting technology success based on patent data. Technological Forecasting & Social Change, 96, 202-214. https://doi.org/10.1016/j.techfore.2015.03.011
    [16] Shuying Li, Xian Zhang, Haiyun Xu, Shu Fang, Edwin Garces, & Tugrul Daim(2020). Measuring strategic technological strength :Patent Portfolio Model. Technological Forecasting and Social Change,157, 120119. https://doi.org/10.1016/j.techfore.2020.120119
    [17] Xuefeng Wang et al(2019). Measuring patent similarity with SAO semantic analysis. Scientometrics, 121, 1–23. https://doi.org/10.1007/s11192-019-03191-z
    [18] Yang X, & Liu X, Song J(2019). A Study on Technology Competition of Graphene Biomedical Technology Based on Patent Analysis. Applied Sciences, 2019, 9(13):2613. https://doi.org/10.3390/app9132613
    [19] Yi Zhang et al. (2016). A hybrid similarity measure method for patent portfolio analysis. Journal of Informetrics,10, 1108-1130. https://doi.org/10.1016/j.joi.2016.09.006
    [20] Yoshie Ishii et al. (2021). A STUDY ON TECHNOLOGY TREND OF CAMERA BY USING FI CODE IN JAPANESE PATENT, JOURNAL OF ENGINEERING AND MANAGEMENT IN INDUSTRIAL SYSTEM, 9(1). 10.21776/ub.jemis.2021.009.01.7
    [21] Youngjin Park, & Janghyeok Yoon(2017). Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering. Technological Forecasting & Social Change, 118,170-183. https://doi.org/10.1016/j.techfore.2017.02.018
    [22] 髙橋 啓治ほか(2018年7月),特許と論文の複合解析による有望応用分野の予測 -印刷技術を例に-,情報プロフェッショナルシンポジウム,一般社団法人 情報科学技術協会。
    [23] 葉士瑋、黃振榮(2017),合作專利分類(CPC)實施現況之探討與應用,智慧財產權月刊,卷217。

    二、 學位論文
    [1] 楊采璇(2016),專利分類號數量與被引用數量關聯性研究,國立臺灣科技大學專利研究所碩士論文。
    [2] 傅雅吟(2018),Google 搜尋核心技術之專利分析,國立臺北科技大學智慧財產權研究所碩士論文。
    [3] 廖彥伶(2020),下肢外骨骼機器人發展趨勢專利分析,國立臺北科技大學智慧財產權研究所碩士論文。
    [4] 李怡蓁 (2020) ,競爭公司在光達系統之專利強度研究,國立臺灣科技大學專利研究所碩士論文。
    [5] 陳家賀 (2021) ,以專利強度分析探討矽晶圓長晶技術之研發趨勢,國立臺灣科技大學專利研究所碩士論文。

    三、 專書
    [1] 劉國讚 (2021) ,國際專利分析與布局,元照出版。
    [2] 耿繼業、何建娃(2013),幾何光學,全華圖書。
    [3] Malacara-Hernández, Zacarías Malacara-Hernández (2004), Handbook of Optical Design. Cambridge: CRC Press.
    [4] Rudolf Kingslake, & Barry Johnson(2009), Lens Design Fundamental [2nd Edition]. Cambridge: Academic Press.
    [5] José Sasián(2019), Introduction to Lens Design [1st edition]. Cambridge: Cambridge University Press.
    [6] Stephen Adams(2012), Information Sources in Patents. Munich: De Gruyter Saur.

    QR CODE