研究生: |
林建宏 Chien-Hung Lin |
---|---|
論文名稱: |
Sierpinski相關圖形的中繼數與全域強防禦聯盟問題之研究 The Hub Number and Global Strong Defensive Alliances of Sierpinski-like Graphs |
指導教授: |
王有禮
Yue-Li Wang |
口試委員: |
張瑞雄
Ruay-Shiung Chang 陳恭 Kung Chen 徐俊傑 Chiun-Chieh Hsh 劉嘉傑 Jia-Jie Liu |
學位類別: |
博士 Doctor |
系所名稱: |
管理學院 - 資訊管理系 Department of Information Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 中繼數 、全域強防禦聯盟 、支配集 、Sierpinski圖形 、延伸Sierpinski圖形 、Sierpinski相關類別圖形 |
外文關鍵詞: | Hub number, Global defensive alliances, Dominating set, Sierpinski graph, Extended Sierpinski graph, Sierpinski-like graph |
相關次數: | 點閱:448 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「聯盟」與「中繼集」在圖論是一個相當新穎而且有趣的觀念,其具有多樣變化的應用,而Sierpiński相關類別圖形目前有許多有意義的性質與各種不同觀點的研究。
圖G = (V, E)的「強防禦聯盟」定義為一個點集合S ⊆ V滿足以下條件,在S集合中任一點v ∈ S,它的相鄰點包含自己同屬於S集合的點數,大於不屬於S集合的相鄰點數。若一強防禦聯盟稱為全域,則同時必須也滿足支配集的定義,稱為「全域強防禦聯盟」。在本論文中第一個主題為在Sierpiński相關類別圖形中找出最小的全域強防禦聯盟,並且也證明推導出的精確值為全域強防禦聯盟的最佳解。
圖G = (V, E)的「中繼集」定義為一個點集合Q ⊆ V滿足以下條件,在圖中任一對點u, v ∈ V \ Q,存在一條路徑,使得此路徑由u到v經過的點都在Q集合中。「中繼數」指在圖中最小數目的中繼集。在本論文中第二個主題為在Sierpiński相關類別圖形中找出中繼數,並且也證明推導出的精確值為中繼集的最佳解。
The alliance problem and the hub set problem are relatively new concepts in graph theory and have many interesting and practical variations. Sierpinski-like Graphs have many appealing properties and were studied from different points of view.
A strong alliance in a graph G = (V, E) is a set of vertices S⊆V satisfying the condition that, for each v∈S, the number of its neighbors, including itself, in S is greater than the number of those neighbors not in S. A strong alliance S is global if S forms a dominating set of G. The first subject of this dissertation is to propose a way for finding a minimum global strong alliance for each of those Sierpinski-like graphs. Furthermore, we also derive the exact values of those global strong alliance numbers.
A set Q⊆V is a hub set of a graph G=(V,E) if, for every pair of vertices u,v∈V\ Q, there exists a path from u to v such that all intermediate vertices are in Q. The hub number of G is the minimum size of a hub set in G. The second subject of this dissertation is to derive the hub numbers of Sierpinski-like graphs including: Sierpinski graphs, extended Sierpinski graphs, and Sierpinski gasket graphs. Meanwhile, the corresponding minimum hub sets are also obtained.
[1] R.C. Brigham, R.D. Dutton, and S.T. Hedetniemi, A sharp lower bound on the powerful alliance number of Cm x Cn, Congressus Numerantium 167 (2004) 57-63.
[2] R.C. Brigham, R.D. Dutton, and S.T. Hedetniemi, Security in graphs, Discrete Applied Mathematics 155 (2007) 1708-1714.
[3] G.H. Chen and D.R. Duh, Topological properties, communication, and computation on WK-recursive networks, Networks 24 (1994) 303-317.
[4] D.R. Duh and G.H. Chen, Topological properties of WK-recursive networks, Journal of Parallel and Distributed Computing 23 (1994) 468-474.
[5] R.I. Enciso and R.D. Dutton, Lower bounds for global alliances on planar graphs, Congressus Numerantium 187 (2007) 187-192.
[6] O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar, and D.R. Skaggs, O_ensive alliances in graphs, Discussiones Mathematicae Graph Theory 24 (2004) 263-275.
[7] G.H. Fricke, L.M. Lawson, T.W. Haynes, S.M. Hedetniemi, and S.T. Hedetniemi, A note on defensive alliances in graphs, Bulletin of the Institute of Combinatorics and its Applications 38 (2003) 37-41.
[8] T. Grauman, S.G. Hartke, A. Jobson, B. Kinnersley, D.B. West, L. Wiglesworth, P. Worah and H. Wu, The hub number of a graph, Information Processing Letters 108 (2008) 226-228.
[9] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Global defensive alliances in graphs, The Electronic Journal of Combinatorics 10 (2003) #R47.
[10] Andreas M. Hinz and A. Schief, The average distance on the Sierpinski gasket, Probability Theory Related Fields 87 (1990) 129-138.
[11] Andreas M. Hinz, Pascal's triangle and the Tower of Hanoi, American Mathematical Monthly 99 (1992) 538-544.
[12] Andreas M. Hinz, S. Klav_zar, U. Milutinovi_c, D. Parisse, and C. Petr, Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence, European Journal of Combinatorial 26 (2005) 693-708.
[13] Andreas M. Hinz and Daniele Parisse, The Average Eccentricity of Sierpinski Graphs, Graphs and Combinatorics in press.
[14] C.J. Hsu, F.H. Wang, and Y.L. Wang, Global defensive alliances in star graphs, Discrete Applied Mathematics 157 (2009) 1924-1931.
[15] M. Jakovac and S. Klav_zar, Vertex-, edge- and total-colorings of Sierpinski-like graphs, Discrete Mathematics 309 (2009) 1548-1556.
[16] V.A. Kaimanovich, Random walks on Sierpi_nski graphs: Hyperbolicity and Stochastic Homogenization, in:Fractals in Graz 2001, Editors: P. Grabner and W. Woess, Birkhauser, 2003, pp. 145-183.
[17] S. Klavzar and U. Milutinovic, Graphs S(n; k) and a variant of the Tower of Hanoi problem, Czechoslovak Mathematical Journal 47 (1997) 95-104.
[18] S. Klavzar, U. Milutinovic, and C. Petr, 1-perfect codes in Sierpinski graphs, Bulletin of the Australian Mathematical Society 66 (2002) 369-384.
[19] S. Klavzar and B. Mohar, Crossing numbers of Sierpinski-like graphs, Journal of Graph Theory 50 (2005) 186-198.
[20] S. Klavzar, Coloring Sierpinski graphs and Sierpinski gasket graphs, Taiwanese Journal of Mathematics 12 (2008) 513-522.
[21] F. Klix and K. Rautenstrauch-Goede, Struktur-und Komponentenanalyse von Problemlosungsprozessen, Zeitschrift für Psychologie 174 (1967) 167-193.
[22] P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi, Introduction to alliances in graphs, in: Proceedings of 17th International Symposium of Computer Information Science, 2002, pp. 308-312.
[23] P. Kristiansen, S.M. Hedetniemi, and S.T. Hedetniemi, Alliances in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 48 (2004) 157-177.
[24] C.H. Lin, J.J. Liu, and Y.L. Wang, The Hub Number of Sierpinski-like Graphs, Theory of Computing Systems 49(3) (2011) 588-600.
[25] D. Parisse, On some metric properties of the Sierpinski graphs S(n; k), Ars Combinatoria 90 (2009) 145-160.
[26] J.A. Rodriguez-Velazquez and J.M. Sigarreta, Offensive alliances of cubic graphs, International Mathematical Forum 1 (2006) 1773-1782.
[27] J.A. Rodriguez-Velazquez and J.M. Sigarreta, Global offensive alliances in graphs, Electronic Notes in Discrete Mathematics 25 (2006) 157-164.
[28] J.A. Rodriguez-Velazquez and J.M. Sigarreta, Spectral study of alliances in graphs, Discussiones Mathematicae Graph Theory 27 (2007) 143-157.
[29] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata, SIAM Journal on Discrete Mathemathics 20 (2006) 610-622.
[30] K.H. Shafique and R.D. Dutton, Maximum alliance-free and minimum alliancecover sets, Congressus Numerantium 162 (2003) 139-146.
[31] K.H. Shafique and R.D. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets, Journal of Combinatorial Mathematics and Combinatorial Computing 56 (2006) 139-145.
[32] J.M. Sigarreta and J.A. Rodriguez, On defensive alliances and line graphs, Applied Mathematics Letters 19 (2006) 1345-1350.
[33] H. Sydow, Zur metrischen Erfasung von subjektiven Problemzustanden und zu deren Veranderung im Denkprozes, Zeitschrift fur Psychologie 177 (1970) 145-198.
[34] A.M. Teguia and A.P. Godbole, Sierpi_nski gasket graphs and some of their properties, Australasian Journal of Combinatorics 35 (2006) 181-192.
[35] G.D. Vecchia and C. Sanges, A recursively scalable network VLSI implementation, Future Generations Computer Systems 4 (1988) 235-243.
[36] M. Walsh, The hub number of a graph, International Journal of Mathematics and Computer Science 1 (2006) 117-124.