簡易檢索 / 詳目顯示

研究生: 葉成林
Pranata - Wibawa Sanjaya
論文名稱: 以梯度消除佈局技術實現之高精度儀測放大器設計
High-Accuracy Instrumentation Amplifier Design with Gradient Cancellation Layout Technique
指導教授: 陳伯奇
Poki-Chen
口試委員: 劉邦榮
Pang-Jung Liu
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 117
中文關鍵詞: 元件佈局系統不匹配高階梯度消除多重元件匹配同重心儀測放大器
外文關鍵詞: device layout, systematic mismatch, high-order gradient cancelation, multiple-device matching, common centroid, instrumentation amplifier.
相關次數: 點閱:209下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要聚焦完整之佈局樣態產生方法,用以消弭任何數量元件之任何階次梯度誤差。所提之方法簡單易懂,完全補足歷年來佈局論文所提技術無法涵蓋所有佈局需求之缺憾。設計者可以藉由本論文所提出之方法,提前在電路設計階段藉由關鍵元件所需消弭之梯度階次預估每個元件所需之分割數量,實現電路與佈局統合設計,俾便進行更為精準之模擬,加速研發之進程。相關之作法不但經過MATLAB之行為模擬驗證,亦藉由晶片實作成功展現優於以往佈局方式之匹配效能。最後,更將所提之方法應用在儀測放大器關鍵元件之佈局上,以精巧之佈局取代複雜之電路設計,冀望達到可堪比擬之效能,證明所提佈局方法之神效。該儀測放大器以台積電0.18 mm標準 CMOS 製程實現,後模擬顯示增益誤差、頻寬與偏移電壓各為 2%、2.3MH與0.88 mV。共模與電源拒斥比分別是 58dB 與 106 dB。總晶片面積為0.129mm2 ,在 ±1.5V 電源供應下,消耗611mA電流。


    This thesis provides the completion of layout technique utilizing devices placement in a special pattern to generate high-order of gradient error mismatch cancellation capability. The methodology presented in this thesis is an easily understandable mean of creating layout patterns in order to be used for any quantity and variety of devices, and any order of gradient error mismatch as required by the designer. Moreover, multiple layout patterns are available for layout engineers depending on the condition and size of the device. This proposed methodology has been rigorously tested through calculation and MATLAB simulation. The chip fabrication measurement has also shown successful results. Even though these chips are packaged by two different companies, all the measured chips continue to show that higher order pattern achieves better accuracy. An instrumentation amplifier design also has been made to implement the proposed methodology in order to achieve high order accuracy among the critical devices. It utilizes resistive feedback topology with balancing technique for its resistors. The design is implemented using TSMC 0.18 m standard process. Based on post-simulation, it has 2% gain error with 2.3MHz Bandwidth, 0.88mV offset voltage, 58dB CMRR and 106dB PSRR. The total chip area is 0.129mm2 with ±1.5V supply voltage 611A current consumption.

    摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables xi Chapter 1 1 Introduction 1 1.1 Introduction 1 1.2 Motivation 3 1.3 Thesis Organization 4 Chapter 2 5 Process Variation and Mismatch Overview 5 2.1 Process Variation 5 2.2 Mismatch 6 2.2.1 Random Mismatch 9 2.2.2 Systematic Mismatch 12 2.3 Gradient Error 13 Chapter 3 16 Layout Pattern Technique for High-Order Gradient Error Cancellation 16 3.1 Common Centroid 16 3.2 The History of Common Centroid Layout Pattern 19 3.3 The Proposed Generalization Common Centroid Layout Pattern Technique 25 3.3.1 Asymmetry, Symmetry and Anti-Symmetry 25 3.3.2 Symmetrical and Anti-symmetrical Mirroring 27 3.3.3 Pattern Degeneration 31 3.3.4 Generalization of Rule 34 3.3.5 Layout Pattern Using the Proposed Technique 38 Chapter 4 48 Rules Verification 48 4.1 Verification with Previous Techniques 48 4.2 Mathematic Verification 53 4.3 Study Case Verification 58 4.4 Simulation Verification 62 4.5 Chip Measurement Verification 66 Chapter 5 69 Layout Technique Implementation in Instrumentation Amplifier Design 69 5.1 Introduction 69 5.2 Instrumentation Amplifier 70 5.3 Operational Amplifier Design 72 5.4 Instrumentation Amplifier Design 75 5.5 Instrumentation Amplifier Layout 81 5.6 Post Simulation 93 Chapter 6 95 Conclusion 95 References 96

    [1] T. Zeng, et al., "An Order-Statistics Based Matching Strategy for Circuit Components in Data Converters," IEEE TCAS-I, pp.11-24, Jan. 2013.
    [2] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration,” IEEE J. Solid State Circuits, vol. 37, no. 2, pp. 183–190, Feb. 2002.
    [3] B. Stine, D. Boning, and J. Chung, “Analysis and decomposition of spatial variation in integrated circuit processes and devices,” IEEE Trans. Semiconduct. Manuf., vol. 10, no. 1, pp. 24–41, Feb. 1997.
    [4] M. Orshansky, L. Milor, and C. Hu, “Characterization of spatial intrafield gate CD variability, its impact on circuit performance, and spatial mask-level correction,” IEEE Trans. Semiconduct. Manuf., vol. 17, no. 1, pp. 2–11, Feb. 2004.
    [5] Smruti R. Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano, Abhishek Tiwari and Josep Torrellas, “VARIUS: A model of process variation and resulting timing errors for microarchitects,” IEEE Trans. on semiconductor and manufacturing, vol. 21, no.1, pp. 3-13, 2008.
    [6] Kelin J. Kuhn, Martin D. Giles, David Becher, Pramod Kolar, Avner Kornfeld, Roza Kotlyar, Sean T. Ma, Atul Maheshwari, and Sivakumar Mudanai, “Process Technology Variation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2197-2208, 2011.
    [7] Hans Tuinhout, Nicole Wils, Pietro Andricciola, “Parametric Mismatch Characterization for Mixed-Signal Technologies,” J. Solid State Circuits, vol. 45, no. 9, pp. 1687–1696, Sep. 2010.
    [8] Randy W. Mann, Terry B. Hook, Phung T. Nguyen, Benton H. Calhoun, “Nonrandom Device Mismatch Considerations in Nanoscale SRAM,” IEEE Trans. VLSI, vol. 20, no. 7, pp. 1211–1220, July 2012.
    [9] Jwu-E. Chen, Pei-Wen Luo, Chin-Long Wey, “Placement Optimization for Yield Improvement of Switched-Capacitor Analog Integrated Circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuit and Systems, vol. 29, no. 2, pp. 313–318, February 2010.
    [10] A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1254–1260, May 2003.
    [11] G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3063–3070, Dec. 2006.
    [12] A. R. Brown, G. Roy, and A. Asenov, “Poly-Si gate related variability in decananometre MOSFETs with conventional architecture,” IEEE Trans. Electron Devices, vol. 54, no. 11, pp. 3056–3063, Nov. 2007.
    [13] Yiming Li, Chih-Hong Hwang, and Tien-Yeh Li, “Random-Dopant- Induced Variability in Nano-CMOS Devices and Digital Circuits,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1588–1597, 2009.
    [14] Y. Cong and R. L. Geiger, “Switching-sequence optimization for gradient error-compensation in thermometer-decoded DAC array,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 585–595, July 2000.
    [15] Emanuele Baravelli, Abhisek Dixit, Rita Rooyackers, Malgorzata Jurczak, NicolÒ Speciale, Kristin De Meyer, "Impact of Line-Edge Roughness on FinFET Matching Performance," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2466-2474, September 2007.
    [16] J. Paul A. van der Wagt, Gordon G. Chu, and Christine L. Conrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on circuits and system—I, Vol. 51, pp. 186-190, Jan. 2004.
    [17] C.-H. Lin and K. Bult, “A 10-b, 500 Msample/s CMOS DAC in 0.6 mm,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, 1998.
    [18] Venkata Gutta, Anthony Edward Parker, Anthony Fattorini, "Characterization of Systematic and Random Diode Mismatches in Antiparallel-Diode Mixers," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3153-3162, Dec. 2009.
    [19] Nicole Wils, Hans P. Tuinhout, Maurice Meijer, "Characterization of STI Edge Effects on CMOS Variability," IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 22, pp. 59-65, Feb. 2009.
    [20] S. Hausser, S. Majoni, H. Schligtenhorst, G. Kolwe, " Mismatch in Diffusion Resistors Caused by Photolithography," IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 2, pp. 181-186, May. 2003.
    [21] M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, " Matching Properties of MOS Transistors," IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, October 1989.
    [22] J. Bastos, M. Steyaert, B. Graindourze, and W. Sansen, “Matching of MOS transistors with different layout styles,” Proc. IEEE Int. Conf. Microelectronic Test Structures, vol. 9, pp. 17–18, Mar. 1996.
    [23] E. S. Karhunen, F. V. Fernández, and A. Rodríguez-Vázquez, “Mismatch distance term compensation in centroid configurations with nonzero-area devices,” Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, Hong Kong, June 1997, pp. 1644–1647.
    [24] Dixian Zhao, Patrick Reynaert, " A 40 nm E-Band Transmitter With Compact and Symmetrical Layout Floor-Plans," IEEE J. Solid-State Circuits, vol. 50 no. 11, pp. 2560-2570, November 2015.
    [25] H.P. Tuinhout, M. Vertregt, “Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures,” IEEE Transactions on Semiconductor Manufacturing, vol. 14, no. 4, pp.302-310, Nov. 2001.
    [26] Mika Laiho, Victor Brea, Ari Paasio, "Effect of Mismatch on the Reliability of ON/OFF-Programmable CNNs," IEEE Transactions on Circuits and Systems-I, vol. 56, no. 10, pp. 2259-2269, October 2009.
    [27] H. P. Tuinhout, G. Hoogzaad, M. Vertregt, R. L. J. Roovers, C. Erdmann, "Design and Characterization of a High-Precision Resistor Ladder Test Structure," IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 2, pp. 187-193, May 2003.
    [28] Van der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, and G. Gielen, “A 14-bit intrinsic accuracy Q random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708–1718, Dec. 1999.
    [29] E. Sackinger, L. Fornera " On the Placement of Critical Devices in Analog Integrated Circuits," IEEE Transactions on Circuits and Systems, vol. 37, no. 8, pp. 1052–1057, Aug. 1990.
    [30] Cheng-Wu Lin, Jai-Ming Lin, Yen-Chih Chiu, Chun-Po Huang, Soon-Jyh Chang, "Mismatch-Aware Common-Centroid Placement for Arbitrary-Ratio Capacitor Arrays Considering Dummy Capacitors," IEEE Trans. Computer-Aided Design of Integrated Circuit and Systems, vol. 31, no. 12, pp. 1789-1802, December 2012.
    [31] Mark Po-Hung Lin, Yi-Ting He, Vincent Wei-Hao Hsiao, Rong-Guey Chang, Shuenn-Yuh Lee, " Common-Centroid Capacitor Layout Generation Considering Device Matching and Parasitic Minimization," IEEE Trans. Computer-Aided Design of Integrated Circuit and Systems, vol. 32, no. 7, pp. 991-1002, July 2013.
    [32] H. Elzinga, “On the impact of spatial parametric variations on MOS transistor mismatch,” Proc. IEEE Int. Conf. Microelectronic Test Struct., vol. 9, Mar. 1996, pp. 173–177.
    [33] J. Paul A. van der Wagt, Gordon G. Chu, and Christine L. Conrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on circuits and system—I, Vol. 51, pp. 186-190, Jan. 2004.
    [34] Dai Xin, et al., "An Nth order central symmetrical layout pattern for nonlinear gradients cancellation," IEEE ISCAS, May 2005.
    [35] D. Boning and S. Nassif, “Models of process variations in device and interconnect,” in Design of High-Peformance Microprocessor Circuits. Piscataway, NJ: IEEE Press, 2000, ch. 6, pp. 98–115.
    [36] Rabab Ezz-Eldin, Magdy A. El-Moursy, Hesham F. A. Hamed, " Analysis and Design of Network on Chip under High Process Variation," IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 508-509, 2015.
    [37] P. Drennan, C. McAndrew, “Understanding MOSFET mismatch for analog design,” IEEE Journal of Solid-State Circuits, vol. 38, issue. 3, pp. 450-456, Mar. 2003.
    [38] A. Hastings, The art of analog layout, 2nd ed.: Pearson Prentice Hall, 2006.
    [39] Duane Boning and Sani Nassif, “Models of process variations in device and interconnect,” Book Ch. 6 of Design of High-Performance Microprocessor Circuits, by Chandrakasan, A., Bowhill, W.,Fox, F., Wiley-IEEE Press Ebook Chapters, 2001.
    [40] D.A.J. Moran, D.A. MacLaren, S. Porro, H. McLelland, P. John, and J.I.B. Wilson, “Processing of 50 nm gate-length hydrogen terminated diamond FETs for high frequency and high power applications,” Elsevier microelectronic engineering 88, pp. 2691-2693 www.scienceDirect.com, 2011.
    [41] Stefan Hausser, Stefan Majoni, Holger Schligtenhorst, Georg Kolwe, “Systematic Mismatch in Diffusion Resistors caused by Photoligthograpy,” Proc. IEEE Int. Conference on Microelectronic Test Structure, vol 15, April 2002.
    [42] Budiman, Fajar "Layout patterns for multiple-device matching in Integrated circuits", 2013.
    [43] Maretta, Rella "High-Accuracy Multiple-Device Matching Layout for High-Order Gradient Cancellation", 2014.
    [44] Jeffrey R.Riskin, "A User's Guide to IC Instrumentation Amplifier," AN-244 Application notes.
    [45] Instrumentation Amplifier (In-Amp) Basics, Analog Devices MT-061 Tutorial.
    [46] Charles Kitchin and Lew Counts, "A Designer's Guide to Instrumentation Amplifiers, 3rd Edition, Analog Devices, 2006.
    [47] C. Toumazou, F. J.Lidgey, and D. G. Haigh, "Analogue IC Design: The Current-Mode Approach," Eds. London, U.K.: Peter Peregrinus Ltd., 1990, ch. 16, pp. 569–595.
    [48] Rong Wu; Kofi A. A. Makinwa; Johan H. Huijsing, "A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz 1f Noise Corner and an AC-Coupled Ripple Reduction Loop," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232-3243, December 2009.
    [49] Apisak Worapishet; Andreas Demosthenous; Xiao Liu, “CMRR at 2-MHz Using Capacitive Neutralization Analysis, Design Considerations, and Implementation,” IEEE Transactions on circuits and system—I, Vol. 58, pp. 699-710, April 2011.
    [50] Michel Meunier; Yves Gagnon; Alain Lacourse; Mathieu Ducharme; Simon Rioux; Yvon Savaria, "Precision Resistor Laser Trimming for Analog Microelectronics," Conference on Lasers and Electro-Optics (CLEO), 2007.
    [51] J. Zhou and J. Liu, “On the measurement of common-mode rejection ratio,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 1, pp.49–53, Jan. 2005.
    [52] Tobey, Graeme, Huelsman, “Operational Amplifiers: Design and Applications”, McGraw-Hill, 1971.
    [53] James M. Bryant, "Simple Op Amp Measurements," Analog Dialogue, April 2011.

    無法下載圖示 全文公開日期 2021/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE