簡易檢索 / 詳目顯示

研究生: 莊緯民
Wei-min Chaung
論文名稱: 齒槽骨高度對植牙區應力的影響
The Influence of Height of Alveolar Bone on Stress distribution in Implant-Supported Region.
指導教授: 曾垂拱
Chwei-Goong Tseng
口試委員: 李維楨
Wei-Chen Lee
石淦生
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 齒槽骨高度植牙區應力
外文關鍵詞: Height of Alveolar Bone, Stress distribution in Implant-Supported Region
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主旨探討因嚴重牙周病、維護不良或是在植牙手術過程中爲增加牙床寬度而磨除上層齒槽骨等原因,造成齒槽骨高度減少而影響植牙區應力的情形。根據齒槽骨幾何尺寸與材料性質,製作出近似實體之雙骨質齒槽骨模型,並植入植體、支台及齒冠,而模擬齒槽骨高度減少時將實體模型的皮質骨局部逐漸磨除,同時進行應變規法與有限元素法的分析比較。
分析結果顯示,齒槽骨的最大應力通常發生在植體與骨組織互相接觸部位上,在上段為植體頸部與皮質骨上緣相接處,在下段為植體底部與鬆質骨相交處,而植體周圍骨組織的應力會隨齒槽骨高度降低而增加。植體底部的縱向位移會隨齒槽骨高度減少而有增大的趨勢。當齒冠側邊承受水平力且齒槽骨降低高度時,植體與齒冠的橫向位移會明顯增加,進而使植體鬆動。


The purpose of this thesis is to study the influence of the height decrease of alveolar bone on Stress distribution in Implant-Supported Region, resulted from serious periodontal disease, careless maintenance, removing upper alveolar bone in order to increase bone ridge width in oral implant surgery.
According to the real alveolus bone which contains the cortical bone and the cancellous bone, we establish a two-material model. The material constants (Modulus of Elasticity and Poisson’s Ration) of the model were determined experimentally. An implant was installed in the model as well as an abutment and a crown to simulate a real oral implantation.
The complete model under occlusion was simulated by FEM. At the surface of the real model of the selected point was bonded a bi-axes strain gage. Thickness of the cortical bone on the model was reduced gradually to simulate the height decrease of the alveolar bone. The measured axial strains which under occlusion were found agree well with those results from FEM.
From the results, the portion of alveolus bone that contacts with the implant is generally subjected to the maximum stress, the upside of cortical bone that contacts with the neck of implant, and the cencellous bone that contacts with the root of implant. The stress distribution rises in alveolus bone near the implant when the height decrease of alveolar bone.
The vertical displacement of the root of implant increases with decreasing of the height of alveolar bone. When the crown is subjected to horizontal force, the transverse displacement of the implant and the crown increases with decreasing of the height of alveolar bone.

論 文 摘 要 I 英 文 摘 要 II 誌 謝 III 目 錄 IV 圖 表 索 引 VIII 第一章 緒 論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機與目的 6 1-4 研究流程 7 1-5 本文架構 8 第二章 牙科植體概述 9 2-1 牙齒概述 10 2-2 牙科植體的類型 12 2-3 植牙過程 14 2-4 牙科植體材料 16 2-5 植體的設計考量 17 2-5-1 植體的外型設計 17 2-5-2 負荷影響 18 2-5-3 骨質密度的考量 21 第三章 實體模型製作與實驗設備 23 3-1 材料的選用 23 3-2 實體模型製作過程 26 3-3 植入真實植體 28 3-4 實驗設備 31 3-5 應變規與量測系統檢驗 33 3-5-1 量測的時間長短造成的影響 35 3-5-2 溫度的變化對應變規的影響 36 3-5-3 應變規與待測物的熱膨脹係數關係 42 3-5-4 結論 45 第四章 有限元素法與軟體 47 4-1 有限元素法概述 47 4-2 有限元素法分析軟體 51 4-3 模型分析 52 4-3-1 元素的選用 52 4-3-2 網格化 53 4-3-3 邊界條件設定 56 4-3-4 應力分析模式及材料性質設定 57 4-3-5 求解 58 4-3-6 分析模組設計 60 4-4 固定端不同的比較 62 4-4-1 固定端設於下顎齒槽骨底部 64 4-4-2 固定端設於下顎齒槽骨後端 66 4-4-3 討論與比較 67 4-4-4 結論 69 4-5 初步分析與應變規黏貼位置 71 第五章 實驗與討論 72 5-1 數值模擬分析結果 72 5-2 實體模型量測結果 74 5-3 實驗與模擬結果比對驗證 77 5-4 結果與討論 80 5-4-1 量測點應變量的變化 80 5-4-2 植體與齒槽骨接觸部位的應力分佈 82 5-4-3 植體底部之位移量 85 5-4-4 水平力引發的植體與齒冠之位移量 87 第六章 結論與未來展望 89 6-1 結論 89 6-2 未來展望 92 參 考 文 獻 93 作 者 簡 介 97

[1] Bahat, O., Handelsman, M., 1996, “Use of wide implants and double implants in the posterior jaw,” International Journal of Oral and Maxillofacial Implant, Vol.11, pp. 379-386.
[2] Carlsson, L., Andesson, B., Odman, P., Branemark, PI., 1992, “A new Branemark single tooth abutment. Handing and early clinical experience,” International Journal of Oral and Maxillofacial Implants, Vol.7, pp. 105-111.
[3] http://www.dentalshow.com.tw/guest/columnist/viewcolumndoc.asp? sno=161
[4] 張文輝,2005,「美齒與科技―人工植牙」,科學發展,394期。
[5] 許文賢,2002,「脛骨骨髓內釘之有限元素分析」,國立台灣科技大學機械工程研究所論文。
[6] Rieger, M. R., Fareed, K., Adams, W. K., Tanquist, R. A., 1989a. “Bone stress distribution for three endosseous implant.” The Journal of Prosthetic Dentistry , Vol.61, pp.223-228.
[7] Rieger, M. R., Mayberry, M., Brose, M. O., 1990b. “Finite element analysis of six endosseous implant.” The Journal of Prosthetic Dentistry , Vol.63, pp.671-676.
[8] Meijer, H. J., Starmans, F. J., Bosman, F., Steen, W. H., 1993. “A comparison of three finite element models of an edentulous mandible provided with implant.” Journal of Oral Rehabilitation , Vol.20, pp.147-157.
[9] Stegaroiu, R., Kusakari, H., Nishiyama, S., Miyakawa, O., 1998. “Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis.” International Journal of Oral and Maxillofacial Implants , Vol.13, 781-790.
[10] Palamara, D., J.E.A. Palamara, M.J. Tyas, H.H. Messer , 2000 , “Strain patterns in cervical enamel of teeth subjected to occlusal loading, ” Dental Materials, pp.412 -419.
[11] Sevimay, M., Turban, F., Kilicarslan, M. A., Eskitascioglu, G., 2005, “Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown,” J Prosthet Dent, Vol. 93, pp. 227-34.
[12] H.L. Huang, J.S. Huang, C.C. Ko, J.T. Hsu, C.H. Chang, Y.C. Chen, 2004, “Effects of splinted prosthesis supported a wide implant or two implants: a three-dimensional finite element analysis,’’ Clinical Oral Implants Research, pp.466-472.
[13] 簡妥芸,2008,「後牙區人工植牙之力學驗證」,國立台灣科技大學機械工程研究所論文。
[14] Carlsson, T., Rostlund, B., Albrekson, T., Albrekson, P., Branemark, PI, 1986, “Osseointegration of titanium implants, ” Acta Orthopedic Scandinavian, pp.285-289.
[15] Mild EE. ,Bannon BP, 1981, “Titanium alloys for biomaterial applications–An overview” Presented at A.S.T.M.-sponsored symposium, Phoenix.
[16] http://www.dr-tony.com.tw/index/health_sub01-101.htm
[17] 中華民國齒顎矯正醫學會,2004,「齒顎矯正」,台視文化。
[18] 鄭信忠,2003,「牙齒美容完全搞定」, 原水文化出版,pp.56-57。
[19] http://www.dr-tony.com.tw/index/health_sub01-101.htm
[20] 呂國富,1999,「人工植牙臨床上生物機械學的考量」,臨床口腔植體學,日毅企業有限公司,pp.119-125。
[21] 江元壽,2008,「下顎骨植體贗復固定式全口牙橋不同植體佈置之力學分析」,國立台灣科技大學博士班論文。
[22] http://www.hehong.com.tw/myteeth/index.php?t=2&article_id=21
[23] 鐘國雄,2001,「牙科材料學」,合記書局,pp.437-447。
[24] Kay C. Dee , David A. Puleo , Rena Bizios, 2002, “An Introduction to Tissue-Biomaterial Interactions”, Wiley-Liss, pp.1-12.
[25] 張正忠,李勝揚,2000,「選擇人工植牙系統時之骨質密度考量」,中華牙醫學會訊,N.157,pp.40-43。
[26] Shih-yun Wu,Yu-lin Lai,Li-jane Ling, 2003, “Considerations about bone gualities of jaw bone for dental implant therapy”, Chin J Periodontology, V.8, N.4, pp.259-262.
[27] Stegaroiu R., Kusakari H., Nishiyama S., Miyakawa O., 1998, “Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis.” International Journal of Oral and Maxillofacial Implants, pp.781-790.
[28] James W. Dally, William F. Riley, 1991, “Experimental Stress Analysis.” McGraw-Hill, U.S.A., pp.242-244.
[29] KYOWA, Measure strain with strain gages, pp.14
[30] http://www.fedtec.com.tw/files/StrainGage_GeneralInformation.pdf
[31] 鄒紅旗,鄭家偉,1999,「幾種牙科材料的研究現狀」,口腔材料器械雜誌,第8卷第2期。
[32] Saeed, M., 1999, “Finite element analysis : theory and application with ANSYS.” Prentice Hall, pp.1-6.
[33] 賴育良、林啟豪、謝忠祐,1997,「ANSYS 電腦輔助工程分析」,儒林圖書,pp.5-12。
[34] Meijer, H. J., Starmans, F. J., Bosman, F., Steen, W. H., 1993. “A comparison of three finite element models of an edentulous mandible provided with implant.” Journal of Oral Rehabilitation , Vol.20, pp.147-157.
[35] 吳立軍、鐘世鎮、黎志明等,2004,「咀嚼肌牽動的下顎骨三維有限元素建模與數值分析」。
[36] Yokoyama, S., Wakabayashi, N., Shiota, M., Ohyama, T., 2005, ”Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures,” International Journal of Oral and Maxillofacial Implants, Vol.20, pp.78-583.
[37] 呂文良,2006,「3-D FEM:下顎後牙區植體膺復之應力分析」,國立台灣科技大學機械工程研究所論文。
[38] 李沛生,2007,「植牙應力分析之驗證」,國立台灣科技大學機械工程研究所論文。

QR CODE