簡易檢索 / 詳目顯示

研究生: 徐維懋
Wei-mau Hsu
論文名稱: 鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估
Materials Characteristics of Spinel Nickel Ferrite Oxygen Carrier and It’s Selection of Inert Supports for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 化學迴圈燃燒程序鎳鐵氧化物尖晶石結構載氧體水分解產氫
外文關鍵詞: Chemical Looping Combustion Process, Nickel Ferrite, Spinel Structure, Water-splitting for H2 Production, Oxygen Carriers
相關次數: 點閱:252下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴圈燃燒程序是一項具有低成本、高能源效率優點之二氧化捕獲與封存技術。對於化學迴圈燃燒程序而言,金屬載氧體的性能一直是能否實際運行的關鍵所在。一般常見之金屬載氧體在與擔體之搭配後容易發生交互反應而產生出不具活性反應之附產物,因而大幅降低化學迴圈程序之執行效能。在本實驗之初期研究發現,鎳鐵氧化物尖晶石結構具有結合氧化鐵之高氧化活性及氧化鎳之高還原速率之優點,且鎳鐵氧化物尖晶石結構載氧體在經過五圈的化學迴圈程序後仍具有優秀之反應活性,由此可說明此鎳鐵氧尖晶石載氧體有著適合進行化學迴圈程序的潛力。然而經過10 圈化學迴圈程序後表面結構有明顯之顆粒聚集現象。是以提出此實驗欲找尋適當惰性擔體混摻入載氧體之中以提高其化學迴圈程序之反應活性。
因此本研究使用固態反應法製備之鎳鐵氧化物尖晶石結構載氧體搭配三氧化二鋁、二氧化鋯、氧化釔安定氧化鋯作為擔體,探討不同載氧體/擔體之材料特性,並以熱重分析儀模擬載氧體/擔體系統之還原及氧化活性,再以SEM 及XRD 研究載氧體在執行還原氧化程序前後表面結構及組成結構之變化,以其了解鎳鐵氧化物搭配各種擔體之系統於化學迴圈程序中之還原及氧化活性並推導反應機制。並使用固定化床反應器搭配氣相層析儀分析載氧體之反應能力及水分解產氫之效能,以評估此鎳鐵氧化物載氧體系統未來於化學迴圈燃燒程序商業化之可行性。
三氧化二鋁具有耐高溫、價格低廉及產量豐富之特性,實驗使用三氧化二鋁做為惰性擔體應用於化學迴圈燃燒程序中,有效提升鎳鐵氧化物尖晶石結構載氧體還原氧化之執行圈數,可使鎳鐵氧化物尖晶石結構載氧體執行達50圈之化學迴圈燃燒程序。二氧化鋯具有高熔點、高沸點之化學性質,實驗使用二氧化鋯當作惰性擔體應用於化學迴圈燃燒程序中,二氧化鋯惰性擔體不與鎳鐵氧化物尖晶石結構載氧體發生交互反應,並且可有效降低載氧體之活化能能障,使得反應能夠更快速的進行,是極為安定之惰性擔體而可應用於化學迴圈燃燒程序中。氧化釔安定氧化鋯一般常用於固態氧化物燃料電池中當作固態電解質使用,其具有高熱及高化學穩定性之優點,而可使用於化學迴圈燃燒程序之中,並且固態電解質之氧離子傳導能力使得氧化釔安定氧化鋯系統在氧化段之程序具有更為優秀之反應能力。因此在考慮商業化大量應用之情況下,三氧化二鋁做為惰性擔體應用於化學迴圈燃燒程序中,相較於使用二氧化鋯惰性擔體及使用氧化釔安定氧化鋯惰性擔體之載氧體而言,具有更適合被實際應用之可行性。


Chemical looping combustion (CLC) process is a promising technology of CO2 capture and sequestration (CCS) with high energy efficiency and low emission of greenhouse gases. For the practical use, the performance of oxygen carriers is a key issue for the application on CLC process. Unfortunately, the formation of inactive compounds by the interaction between the ordinary metal oxygen carriers and inner supported were evidently encountered in a CLC process, which subsequently reduced the performance of CLC process. In our preliminary results, after 5 successive cycles, NiFe2O4 powder with a single phase of spinel structure represented a higher redox cycling behavior and stability as compared to the standard of NiO and Fe2O3. To identify the initial reduction mechanism of NiFe2O4, we obtained the activation energy (Ea) of the reduction behavior using the reduction rate equation and Arrhenius equation. However, at long redox cycles (10 cycles), the performance of NiFe2O4 oxygen carriers was dramatically reduced due to the agglomeration of oxygen carriers. Thus, the addition of inner materials as the supports to oxygen carriers is a necessary process to prepare a superior oxygen carrier system in the operation of long redox cycles in CLC process.
This study is to investigate the effects various inner supports (Al2O3, ZrO2 and YSZ) of in NiFe2O4 oxygen carrier system and the performance of CLC process by TGA system. Mingled various inner supports shift the reduction kinetics of oxygen carriers, NiFe2O4/Al2O3 system decayed the reduction kinetics but both NiFe2O4/ZrO2 and NiFe2O4/YSZ system promoted the reduction kinetics. To identify the initial reduction mechanism and activation energy, NiFe2O4/Al2O3 system’s activation energy is 83.4 kJ/mol reduction mechanism controlled by solid-state diffusion. For the systems of NiFe2O4/ZrO2 and NiFe2O4/YSZ, both reduction mechanisms are mainly dominated by gas diffusion with the activation energy values of 9.0 kJ/mol and 10.1 kJ/mol, respectively. Our results also demonstrated the higher redox cycling behavior of using the proposed preparation of NiFe2O4 as an oxygen carrier with Al2O3 support in a reversible chemical looping process (CLP).

目錄 致謝....................................................................................................................................I 中文摘要.......................................................................................................................... II 目錄................................................................................................................................ VI 圖索引..........................................................................................................................VIII 表索引............................................................................................................................XII 第一章 緒論 1.1 前言............................................................................................................................1 1.2化學迴圈燃燒程序.....................................................................................................5 1.3 研究動機....................................................................................................................7 第二章 文獻回顧 2.1載氧體之選擇.............................................................................................................8 2.2鎳系(Ni)載氧體.........................................................................................................10 2.3銅系(Cu)載氧體........................................................................................................15 2.4鐵系(Iron)載氧體......................................................................................................18 2.5其餘常見載氧體(Other Oxygen Carriers)................................................................22 2.6複合型載氧體(Composite Oxygen Carriers)............................................................26 2.7尖晶石結構載氧體....................................................................................................30 2.8惰性擔體之選擇........................................................................................................34 2.9固態氧化物結構合成方法........................................................................................35 第三章 實驗設備與程序 3.1 實驗藥品與耗材......................................................................................................38 3.2 實驗步驟..................................................................................................................38 3.3 材料性質分析..........................................................................................................41 3.3.1 X光繞射儀.....................................................................................................41 3.3.2 場發射掃描式電子顯微鏡...........................................................................42 3.3.3 熱重分析儀...................................................................................................42 3.3.4固定化床反應器.............................................................................................44 第四章 結果與討論 4.1以球磨法製備鎳鐵氧化物尖晶石結構載氧體........................................................48 4.1.1起始及初步合成材料分析.............................................................................48 4.1.2起始及初步合成材料之化學迴圈燃燒程序性能分析.................................51 4.2 鎳鐵氧尖晶石結構載氧體配合三氧化二鋁惰性擔體之化學迴圈燃燒程序性能分析..........................................................................................................................64 4.3鎳鐵氧尖晶石結構載氧體配合二氧化鋯惰性擔體之化學迴圈燃燒程序性能分析…..........................................................................................................................71 4.4鎳鐵氧尖晶石結構載氧體配合氧化釔安定氧化鋯惰性擔體之化學迴圈燃燒程序性能分析..................................................................................................................78 4.5各類惰性擔體分析比較............................................................................................85 第五章 結論...................................................................................................................92 第六章 參考文獻...........................................................................................................94   圖索引 圖1-1全球地區二氧化碳排放量 3 圖1-2二氧化碳捕獲技術 4 圖1-3美國能源部之2010年二氧化碳捕獲技術評估 4 圖1-4化學迴圈燃燒程序示意圖 6 圖2-1各類型金屬氧化物載氧體於不同反應溫度下之轉化效能圖 9 圖2-2化學迴圈燃燒程序執行圈數之增加,氧化鎳載氧體之粒徑成長情況 11 圖2-3於還原性氣氛下執行化學迴圈燃燒程序後,反應能力衰退之情形 12 圖2-4純氧化鎳載氧體與氧化鎳載氧體搭配YSZ、NiAl2O4惰性擔體之還原及氧化特性比較 12 圖2-5化鎳載氧體搭配二氧化矽惰性擔體分別於(a)950℃及(b)850℃之操作溫度執行化學迴圈燃燒程序後之反應活性下降成度比較 14 圖2-6純氧化銅載氧體通入甲烷及空氣進行多圈化學迴圈程序後之轉化率衰退結果 16 圖2-7氧化銅載氧體搭配氧化鋁擔體執行程序之氧化還原能力衰退情形 16 圖2-8 氧化銅載氧體分別搭配二氧化鈦及二氧化矽惰性擔體執行化學迴圈燃燒程100圈之結果 17 圖2-9兩階段還原之阿瑞尼斯圖 (a) (b) 19 圖2-10 在各操作溫度下使用氫氣還原氧化鐵之曲線圖 19 圖2-11 Fe2O3-Al2O3還原0-19%並經過1320℃煅燒之結果 20 圖2-12氧化鎳及氧化鐵載氧體搭配氧化鋁、二氧化鈦及bentonite惰性擔體 …21 圖2-13 NiO、Mn2O3、Fe2O3於950 °C 及CuO於800°C執行化學迴圈燃燒程序之結果 23 圖2-14氧化鎳、氧化鐵及氧化鈷載氧體搭配YSZ擔體之轉化率比較 24 圖2-15氧化鎳、氧化鈷、氧化鐵載氧體搭配氧化鋁、二氧化鈦、氧化鎂惰性擔體之還原氧化特性 24 圖2-16 鈣系載氧體在CO及H2氣氛下之平衡常數 25 圖2-17氧化鎳載氧體、氧化鈷載氧體及氧化鎳複合氧化鈷載氧體在甲烷及空氣條件下執行化學迴圈程序之反應結果 27 圖2-18氧化鎳載氧體及氧化鎳混合氧化銅載氧體之還原氧化階段所排放之氣體 28 圖2-19氧化鈣載氧體搭配氧化銅載氧體二階段化學迴圈程序示意圖 28 圖2-20兩階段水解產氫技術示意圖 30 圖2-21銅鐵氧化物載氧體執行化學迴圈程序之TG及TG結果 32 圖2-22各種尖晶石結構載氧體之載氧量及其反應能力 32 圖2-23尖晶石結構AB2O4 33 圖3-1 本研究流程之綱要 39 圖3-2 鐵氧化物尖晶石結構載氧體搭配擔體之實驗流程圖 40 圖3-3熱重分析儀之示意圖 44 圖3-4固定化床反應器系統裝置之示意圖 45 圖3-5氫氣之GC/TCD 校正線 46 圖4-1 (a)NiO(b)Fe2O3(c)鍛燒前NiO混合Fe2O3之混合物(d) NiFe2O4在1200°C高溫爐煅燒後之粉體之X射線繞射之圖譜 49 圖4-2初始粉末及所製備之NiFe2O4尖晶石結構載氧體之SEM表面形態圖……50 圖4-3甲烷做為還原氣氛、氧氣做為氧化氣氛下對Fe2O3、NiO及NiFe2O4尖晶石載氧體之載氧體還原程度(Degree of Reduction, DOR)及載氧體氧化程度(Degree of Oxidation, DOO) 57 圖4-4 合成氣做為還原氣氛、氧氣做為氧化氣氛下對Fe2O3、NiO及NiFe2O4尖晶石載氧體之載氧體還原程度(Degree of Reduction, DOR)及載氧體氧化程度(Degree of Oxidation, DOO) 57 圖4-5 600-1000°C下以甲烷氣氛還原NiFe2O4尖晶石載氧體之載氧體還原程度 58 圖4-6 600-1000°C下以合成氣氣氛還原NiFe2O4尖晶石載氧體之載氧體還原程度 58 圖4-7NiFe2O4尖晶石結構載氧體於(a)甲烷及(b)合成氣下還原之還原反應阿瑞尼斯曲線圖 59 圖4-8甲烷氣氛下NiFe2O4尖晶石載氧體執行5圈化學迴圈燃燒程序 59 圖4-9合成氣氣氛下NiFe2O4尖晶石載氧體執行5圈化學迴圈燃燒程序 60 圖4-10 NiFe2O4尖晶石載氧體執行5圈化學迴圈燃燒程序前後之SEM表面形貌圖 61 圖4-11 Fe2O3、NiO及NiFe2O4尖晶石載氧體使用化學迴圈程序產氫效益比較…62 圖4-12 NiFe2O4尖晶石載氧體結構執行化學迴圈燃燒程序各階段之圖譜 63 圖4-13製備NiFe2O4尖晶石載氧體搭配Al2O3惰性擔體之X射線繞射之圖譜 67 圖4-14 600-1000°C下以合成氣氣氛還原NiFe2O4尖晶石載氧體搭配Al2O3惰性擔體之載氧體還原程度 67 圖4-15 NiFe2O4載氧體搭配Al2O3惰性擔體於合成氣氣氛下還原之還原反應阿瑞尼斯曲線圖 68 圖4-16 NiFe2O4尖晶石載氧體搭配Al2O3惰性擔體還原階段之X射線繞射圖譜 …68 圖4-17 NiFe2O4尖晶石載氧體搭配Al2O3惰性擔體執行多圈數化學迴圈燃燒程序之X射線繞射圖譜 69 圖4-18合成氣氣氛下NiFe2O4尖晶石載氧體搭配Al2O3惰性擔體執行50圈化學迴圈燃燒程序 69 圖4-19 NiFe2O4載氧體搭配Al2O3系統載氧體放大5000倍之SEM形貌圖 70 圖4-20製備NiFe2O4尖晶石載氧體搭配ZrO2惰性擔體之X射線繞射之圖譜 74 圖4-21 600-1000°C下通以混合氣氣氛之NiFe2O4尖晶石載氧體搭配ZrO2惰性擔體之載氧體還原程度 74 圖4-22 NiFe2O4載氧體搭配ZrO2惰性擔體在合成氣氣氛下還原之還原反應阿瑞尼斯曲線圖 75 圖4-23 NiFe2O4尖晶石載氧體搭配ZrO2惰性擔體還原階段之X射線繞射圖譜 …75 圖4-24 NiFe2O4尖晶石載氧體搭配ZrO2惰性擔體執行多圈數化學迴圈燃燒程序之X射線繞射圖譜 76 圖4-25 合成氣氣氛下NiFe2O4尖晶石載氧體搭配ZrO2惰性擔體執行50圈化學迴圈燃燒程序 76 圖4-26 NiFe2O4載氧體搭配ZrO2系統載氧體放大5000倍之SEM形貌圖 …77 圖4-27 LSO、8YSZ、GDC-10和Bi2O3於氫氣氣氛下高溫持溫之熱穩定性分析 81 圖4-28 製備NiFe2O4尖晶石載氧體搭配YSZ惰性擔體之X射線繞射之圖譜 81 圖4-29 600-1000°C下以合成氣氣氛還原之NiFe2O4尖晶石載氧體搭配YSZ惰性擔體之載氧體還原程度 82 圖4-30 NiFe2O4載氧體搭配YSZ惰性擔體在合成氣氣氛下還原之還原反應阿瑞尼斯曲線圖 82 圖4-31 NiFe2O4尖晶石載氧體搭配YSZ惰性擔體還原階段之X射線繞射圖譜 83 圖4-32 NiFe2O4尖晶石載氧體搭配YSZ惰性擔體執行多圈數化學迴圈燃燒程序之X射線繞射圖譜 83 圖4-33合成氣氣氛下NiFe2O4尖晶石載氧體搭配YSZ惰性擔體執行50圈化學迴圈燃燒程序 84 圖4-34 NiFe2O4載氧體搭配YSZ系統載氧體放大5000倍之SEM形貌圖 84 圖4-35 Al2O3、ZrO2及YSZ系統之多圈數執行化學迴圈燃燒程序之載氧體還原程度變化曲線 89 圖4-36 Al2O3、ZrO2及YSZ系統多圈數執行化學迴圈燃燒程序之再氧化速率變化曲線 89 圖4-37 各系統載氧體於合成氣下之等速升溫熱重變化曲線 90 圖4-38 各系統載氧體在900°C之下,以合成氣還原載氧體之完全還原曲線 …90 圖4-39 NiFe2O4搭配Al2O3惰性擔體使用化學迴圈程序產氫之XRD圖譜 91 表索引 表1-1民國99年全系統總發電量組成 3 表2-1各類惰性擔體與載氧體搭配使用所產生之結構 14 表2-2各類系金屬載氧體之特性比較 26 表2-3 常見載氧體搭配惰性擔體之抗應力 36 表2-4 常見載氧體搭配惰性擔體之反應能力 37 表4-1活化能與反應機制之關聯 56 表4-2各系統載氧體於合成氣下之活化能值 88

1. N.L. Panwar, S.C. Kaushik, Surendra Kothari, “Role of Renewable Energy Sources in Environmental Protection: A Review” Renewable and Sustainable Energy Reviews, Vol. 15, pp.1513-1524 (2011)
2. M.F. Demirbas, “Electricity Production Using Solar Energy” Energy Sources Part A, Vol. 29, pp.563-569 (2007)
3. Taiwan Environmental Information Center (httpe-info.org.twnode28254)
4. J. Tollefson, “Countries with Highest CO2-emitting Power Sectors (tones per year)”, Nature, Vol. 450, pp. 327 (2007)
5. 台灣電力公司99年年報
6. A.A. Olajire, “CO2 Capture and Separation Technologies for End-of-pipe Applications : A review” Energy, Vol. 35, pp.2610-2628 (2010)
7. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, “Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program” International Journal of Greenhouse Gas Control, Vol. 2, pp.9-20 (2008)
8. National energy technology laboratory “DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap” pp.41 (2010)
9. H.J. Richter, K.F Knoche, “Reversibility of Combustion Processes, in Efficiency and Costing –Second Law Analysis of Processes” ACS Symposium Series, pp. 71–85 (1983)
10. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies” Progress in Energy and Combustion Science, Vol. 38, pp.215-282 (2012)
11. N.V. Gnanapragasam, B.V. Reddy, M.A. Rosen, “Hydrogen Production from Coal Using Coal Direct Chemical Looping and Syngas Chemical Looping Combustion Systems: Assessment of System Operation and Resource Requirements” International Journal of Hydrogen Energy, Vol. 34, pp.2606-2615 (2009)
12. E.J. Anthony, “Solid Looping Cycles: A New Technology for Coal Conversion” Industrial & Engineering Chemistry Research, Vol. 47, pp.1747-1754 (2008)
13. 朱敬平,「高效能生質氣化試驗設施建造評估規劃計畫」,行政院環境保護署編印 (2010)。
14. A. Lyngfelt, M. Johansson, T. Mattisson, “Chemical-looping Combustion-Status of Development” 9th International Conference on Circulating Fluidized Beds, (2008)
15. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide As an Oxygen Carrier” Energy & Fuels, Vol. 23, pp.2498-2505 (2009)
16. J. Adanez, L. F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion” Energy & Fuels, Vol. 18, pp.371-377 (2004)
17. Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4” Energy & Fuels, Vol. 20, pp.34-44 (2006)
18. T. Mattisson, A. Lyngfelt, “Capture of CO2 Using Chemical-looping Combustion” First Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute, (2001)
19. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier” Industrial & Engineering Chemistry Research, Vol. 47, pp.9279-9287 (2008)
20. M. Ishida, H. Jin, “A Novel Chemical-Looping Combustor without NOx Formation” Industrial & Engineering Chemistry Research, Vol. 35, pp.2469-2472 (1996)
21. M. Ishida, H. Jin, “CO2 Recovery In A Power Plant with Chemical Looping Combustion” Energy Conversion and Management, Vol. 38, pp.187-192 (1997)
22. H. Jina, M. Ishida, “Reactivity Study on A Novel Hydrogen Fueled Chemical-Looping Combustion” International Journal of Hydrogen Energy, Vol. 26, pp.889-894(2001)
23. H. Jin, M. Ishida, “A New Type of Coal Gas Fueled Chemical-looping Combustion” Fuel, Vol. 83, pp.2411-2417 (2004)
24. M. Ishida, K. Takeshita, K. Suzuki, T. Ohba, “Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical-Loop Combustor” Energy & Fuels, Vol. 19, pp.2514-2518 (2005)
25. P. Cho, T. Mattisson, A. Lyngfelt, “Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion” Industrial & Engineering Chemistry Research, Vol. 44, pp.668-676 (2005)
26. H. Jin, T. Okamoto, M. Ishida, “Development of A Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of NiO/NiAl2O4” Industrial & Engineering Chemistry Research, Vol. 38, pp.126-132 (1999)
27. E. Jerndal, T. Mattisson, A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion” Energy & Fuels, Vol. 23, pp.665-676 (2009)
28. R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini, “Ni Based Mixed Oxide Materials for CH4 Oxidation Under Redox Cycle Conditions” Journal of Molecular Catalysis A: Chemical, Vol. 204-205, pp.637-646 (2003)
29. M. Ishida, H. Jin, T. Okamoto, “A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion” Energy & Fuels, Vol. 10, pp.958-963 (1996)
30. M. Ishida, H. Jin, T. Okamoto, “Kinetic Behavior of Solid Particle in Chemical-Looping Combustion: Suppressing Carbon Deposition in Reduction” Energy & Fuels, Vol. 12, pp.223-229 (1998)
31. H.J. Ryu, D.H. Bae, G.T. Jin, “Effect of Temperature on Reduction Reactivity of Oxygen Carrier Particles in a Fixed Bed Chemical-Looping Combustor” Korean Journal of Chemical Engineering, Vol. 20, pp.960-966 (2003)
32. S.R. Son, S.D. Kim, “Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops” Industrial & Engineering Chemistry Research, Vol. 45, pp.2689-2696 (2006)
33. T. Mattisson, M. Johansson, A. Lyngfelt, “The Use of NiO as An Oxygen Carrier in Chemical-looping Combustion” Fuel, Vol. 85, pp.736-747 (2006)
34. L.F. de Diego, F. Garcia-Labiano, J. Adanez, P. Gayan, A. Abad, B.M. Corbella, J.M. Palacios, “Development of Cu-based Oxygen Carriers for Chemical-looping Combustion” Fuel, Vol. 83, pp.1749-1757 (2004)
35. T. Mattisson, A. Jardnas, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygens Application for Chemical-Looping Combustion” Energy & Fuels, Vol. 17, pp.643-651 (2003)
36. C. Dueso, F. Garcia-Labiano, J. Adanez, L.F. de Diego, P. Gayan, A. Abad, “Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier”, Fuel Vol. 88, pp. 2357-2364 (2009)
37. J. Adanez, P. Gayan, J. Celaya, L.F. de Diego, F. Garcia-Labiano, A. Abad, “Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion” Industrial & Engineering Chemistry Research, Vol. 45, pp.6075-6080 (2006)
38. L.F. de Diego, F. Garcia-Labiano, P. Gayan, J.M. Palacios, J. Adanez, “Operation of a 10 kWth Chemical-looping Combustor During 200 h with a CuO–Al2O3 Oxygen Carrier” Fuel, Vol. 86, pp.1036-1045 (2007)
39. L.F. de Diego, P. Gayan, F. Garcia-Labiano, J. Celaya, A. Abad, J. Adanez, “Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration” Energy & Fuels, Vol. 19, pp.1850-1856 (2005)
40. J. Bessieres, A. Bessieres, J.J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen” International Journal of Hydrogen Energy, Vol. 5, pp.585-595 (1980)
41. J. Adanez, F. Garcia-Labiano, L.F. de Diego, P. Gayan, J. Celaya, A. Abad, “Nickel-Copper Oxygen Carriers To Reach Zero CO and H2 Emissions in Chemical-Looping Combustion” Industrial & Engineering Chemistry Research, Vol. 45, pp.2617-2625 (2006)
42. H.Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen” Thermochimica Acta, Vol. 400, pp.61-67 (2003)
43. A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part II. Low Temperature Reduction of Magnetite” Thermochimica Acta, Vol. 456, pp.75-88 (2007)
44. J.A. Pena, E. Lorente, E. Romero, J. Herguido, “Kinetic Study of the Redox Process for Storing Hydrogen Reduction stage” Catalysis Today, Vol. 116, pp.439-444 (2006)
45. A. Abad, J. Adanez, F. Garcia-Labiano, L.F. de Diego, P. Gayan, J. Celaya, “Mapping of The Range of Operational Conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical-looping Combustion” Chemical Engineering Science, Vol. 62, pp.533-549 (2007)
46. 吳侑霖,「製備鐵鋁複合載氧體進行以木炭為固態燃料之化學迴圈研究」,碩士論文,國立台灣科技大學 (2011)。
47. T. Mattisson, M. Johansson, A. Lyngfelt, ” Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion” Energy & Fuels, Vol. 18, pp. 628-637(2004)
48. A. Abad , T. Mattisson , A. Lyngfelt , M. Johansson, ” The Use of Iron Oxide as Oxygen Carrier in a Chemical-looping Reactor” Fuel, Vol. 86, pp.1021–1035 (2007)
49. 劉祐誠,「以合成氣為燃料評估Fe2TiO5 載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學 (2011)。
50. M. Johansson, T. Mattisson, A. Lyngfelt, “Investigation of Mn3O4 with Stabilized ZrO2 for Chemical-Looping Combustion” Chemical Engineering Research and Design, Vol. 84, pp.807-818 (2006)
51. P. Cho, T. Mattisson, A. Lyngfelt, “Defluidization Conditions for a Fluidized Bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion” Industrial & Engineering Chemistry Research, Vol. 45, pp.968-977 (2006)
52. J.B. Lee, C.S. Park, S. Choi, Y.W. Song, Y.H. Kim, H.S. Yang, “Redox Characteristics of Various Kinds of Oxygen Carriers for Hydrogen Fueled Chemical-Looping Combustion” Journal of Industrial and Engineering Chemistry, Vol. 11, pp. 96-102 (205)
53. Q. Song, R. Xiao, Z. Deng, L. Shen, J. Xiao, M. Zhang, “Effect of Temperature on Reduction of CaSO4 Oxygen Carrier in Chemical-Looping Combustion of Simulated Coal Gas in a Fluidized Bed Reactor” Industrial & Engineering Chemistry Research, Vol. 47, pp.8148-8159 (2008)
54. Q. Song, R. Xiao, Z. Deng, W. Zheng, L. Shen, J. Xiao, “Multicycle Study on Chemical-Looping Combustion of Simulated Coal Gas with a CaSO4 Oxygen Carrier in a Fluidized Bed Reactor” Energy & Fuels, Vol. 22, pp.3661-3672 (2008)
55. L. Shen, M. Zheng, J. Xiao, R. Xiao, “A Mechanistic Investigation of a Calcium-based Oxygen Carrier for Chemical looping Combustion” Combustion and Flame, Vol. 154, pp.489-506 (2008)
56. Q. Song, R. Xiao, Z. Deng, H. Zhang, L. Shen, J. Xiao, M. Zhang, “Chemical-looping Combustion of Methane with CaSO4 Oxygen Carrier in a Fixed Bed Reactor” Energy Conversion and Management, Vol. 49, pp.3178-3187 (2008)
57. A. Lambert, C. Delquie, I. Clemencon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand,” Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion” Energy Procedia, Vol. 1 pp. 375-381 (2009)
58. H. Jin, T. Okamoto, M. Ishida,” Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO” Energy & Fuels, Vol. 12, pp.1272-1277 (1998)
59. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, ” Chemical-Looping with Oxygen Uncoupling Using Mn/Mg-based Oxygen Carriers-Oxygen Release and Reactivity with Methane” Fuel, Vol. 90, pp.941-950 (2011)
60. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, ” Manganese/Iron, Manganese/Nickel, and Manganese/Silicon Oxides Used in Chemical-Looping With Oxygen Uncoupling (CLOU) for Combustion of Methane” Energy Fuels, Vol. 23, pp.5269-5275 (2009)
61. M. Shimokawabe, R. Furuichi, T. Ishii, Thermochim.”Influence of The Preparation History of α-Fe2O3 on Its Reactivity for Hydrogen Reduction” Acta. 28 pp.287-305 (1979)
62. J.C. Abanades, R. Murillo, J.R. Fernandez, G. Grasa, I. Martinez, “New CO2 Capture Process for Hydrogen Production Combining Ca and Cu Chemical Loops” Environmental Science & Technology, Vol. 44, pp.6901-6904 (2010)
63. M. Johansson, T. Mattisson, A. Lyngfelt, “Creating a Synergy Effect by Using Mixed Oxides of Iron- and Nickel Oxides in the Combustion of Methane in a Chemical-Looping Combustion Reactor” Energy & Fuels, Vol. 20, pp.2399-2407 (2006)
64. 馬嘉隆,「化學迴圈程序之複合鐵鎳金屬載氧體製備」,碩士論文,國立台灣科技大學 (2011)。
65. J.A. Pena, E. Lorente, E. Romero, J. Herguido, “Kinetic Study of The Redox Process for Storing Hydrogen Reduction Stage” Catalysis Today, Vol. 116, pp.439-444 (2006)
66. M. Roeb, C. Sattler, R. Kluser, N. Monnerie, L. de Oliveira, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides” Journal of Solar Energy Engineering, Vol. 128, pp.125-133 (2006)
67. N. Gokon, H. Murayama, A. Nagasaki, T. Kodama, “Thermochemical Two-step Water Splitting Cycles by Monoclinic ZrO2-supported NiFe2O4 and Fe3O4 Powders and Ceramic foam Devices” Solar Energy, Vol. 83, pp.527-537 (2009)
68. M.H. Khedr, “Isothermal Reduction Kinetics at 900–1100 °C of NiFe2O4 Sintered at 1000–1200 °C” Journal of Analytical and Applied Pyrolysis, Vol. 73 pp.123-129 (2005)
69. T. Kodama, N. Gokon, R. Yamamoto, “Thermochemical Two-step Water Splitting by ZrO2-supported NixFe3-xO4 for Solar Hydrogen Production” Solar Energy, Vol. 82, pp.73-79 (2008)
70. A. Steinfeld, “Solar Thermochemical Production of Hydrogen––A Review” Solar Energy, Vol. 78, pp.603-615 (2005)
71. H.C. Shin, K.D. Junga, S.H. Hanb, J.W. Kim, S.C. Choi, “Decomposition of H2O with M-Ferrite (M=Cu and Ni) for H2 Generation” Journal of Ceramic Processing Research, Vol. 4, pp.30-33 (2003)
72. A. Hoteit, M.K. Chandel, A. Delebarre, “Nickel- and Copper-Based Oxygen Carriers for Chemical Looping Combustion” Chemical Engineering & Technology, Vol. 32, pp.443-449 (2009)
73. B. Wang, R. Yan, H. Zhao, Y. Zheng, Z. Liu, C. Zheng,” Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier” Vol. 25, pp.3344-3354 (2011)
74. A. Lambert, “Use of Redox Mass Having A Spinel Type Structure for A Looping Redox Process” US 20110002826A1 (2011)
75. A. Lambert, P. Briault, E. Comte,” Spinel Mixed Oxides as Oxygen Carriers for Chemical Looping Combustion” Energy Procedia, Vol. 4, pp.318-323 (2011).
76. A. Veres, J.G. Noudem, O. Perez, S. Fourrez, G. Bailleul, “Manganese Based Spinel – Like Ceramics with NTC – Type Thermistor Behaviour” Solid State Ionics, Vol. 178, pp.423-428 (2007)
77. K.S. Kang, C.H. Kim, K.K. Bae, W.C. Cho, S.H. Kim, C.S. Park, “Oxygen-carrier Selection and Thermal Analysis of The Chemical-looping Process for Hydrogen Production” International Journal of Hydrogen Energy, Vol. 35, pp.12246-12254 (2010)
78. P. Cousin, R.A. Ross, “Preparation of Mixed Oxides: a Review” Materials" Science and Engineering, Vol. 130, pp.119-125 (1990)
79. M.H. Khedr, “Isothermal Reduction Kinetics of Fe2O3 Mixed with 1–10% Cr2O3 at 1173–1473 K” ISIJ International, Vol. 40, pp.309-314 (2000)
80. P.G Coombs, Z.A. Munir, “Cyclic Reduction Oxidation of Hematite Powders,” Journal of Materials Science, Vol. 24, pp. 3913-3923 (1989).
81. V. Raghavan, “Al-Fe-Ni-O (Aluminum-Iron-Nickel-Oxygen)” Phase Diagram Evaluations: Section II, Vol. 31, pp.377-378 (2010)
82. Y.L. Kuo, Y.Y. Liang, “Assessment of Thermochemically Stable Apatite La10(SiO4)6O3 as Electrolyte for Solid Oxide Fuel Cells” Ceramics International, Vol. 38, pp.3955-3961 (2012)
83. F. Kroger, H. J. Vink, “Solid State Physics”, F. Seitz and D. Turnbull (Eds.), Academic Press, Vol. 3,pp. 304 (1965)

QR CODE