簡易檢索 / 詳目顯示

研究生: 王儷娟
Li-chann Wang
論文名稱: 交叉極化調變為主之波長轉換器
Wavelength Converters Based on Cross-Polarization Modulation
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
吳靜雄
Jing-shown Wu
李揚漢
Yang-Han Lee
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 交叉極化調變波長轉換器功率動態範圍啁啾
外文關鍵詞: cross polarization modulation, wavelength converter, power dynamics, chirp
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波長轉換器為全光網路中的關鍵元件,能將原始信號轉換至其他波長上,可有效提升網路效能、解決波長阻塞問題及增加網路中波長使用的彈性。
    本論文主要探討半導體光放大器中的交叉極化調變機制,利用此一物理機制製作波長轉換器並找出波長轉換器的最佳工作條件及功率動態範圍。以一對一交叉極化調變波長轉換器而言,以誤碼率10-9下的功率償付値小於1 dB的基準來看,輸入信號光功率的動態範圍約6 dB;而一對二的情況則有5 dB的動態範圍。此外我們也與交叉增益調變機制之波長轉換器做比較,發現交叉極化調變的波長轉換器對功率變化並不會特別敏感。
    在10 Gb/s傳輸特性方面,交叉極化調變機制之轉換信號,在功率償付値小於1 dB的基準下,可傳輸距離達40 km的距離;但交叉增益調變機制轉換之信號,並無法進行長距離的傳輸,這主要是因為啁啾效應為正的特性,加強了傳輸中的色散效應,導致波形嚴重失真所致。在此我們提出以交叉極化調變機制改變交叉增益調變轉換信號在啁啾效應之極性,促使轉換信號在傳輸30 km後仍可維持清晰的眼形圖。在適當的信號光功率控制下,也可提升交叉增益調變轉換信號之明滅比,使得該轉換機制在傳輸應用上更具可行性。


    The wavelength converter is a key component in all optical networks. The function of a wavelength converter is to convert the original signal from one wavelength to another wavelength. It can reduce the wavelength blocking problems and provide flexible services for optical networks. In this thesis, we utilize the cross-polarization modulation (CPM) mecha-nism in a semiconductor optical amplifier (SOA) to realize high-perfor-mance wavelength converters.
    We first investigate the operation conditions and power dynamics for CPM wavelength converters. A CPM wavelength converter can have about 6-dB and 5-dB dynamic ranges for 1:1 and 1:2 wavelength conver-sion, respectively. The performance of XGM wavelength converters is also investigated for comparison with CPM wavelength converters.
    From the transmission experiments, we obtain the clear eye patterns with less than 1-dB power penalty when the signal is CPM-converted and transmitted over 40-km distance. On the other hand, the signal converted by the XGM mechanism can only transmit for a short distance due to the positive chirp that enhances the dispersion effect via a SMF. In order to improve the performance of a XGM converter, we insert a CPM con-verter after the XGM converter in order to use the negative chirp to com-pensate the XGM converted signal. With this scheme, the XGM con-verted signal can be transmitted over 30-km transmission.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 中英名詞對照 VIII 第一章 簡介 1 1.1 前言 1 1.2 研究目的與動機 5 1.3 論文架構 6 第二章 波長轉換技術 7 2.1 前言 7 2.2 半導體光放大器基本特性 8 2.2.1 放大自發性放射 9 2.2.2 增益 11 2.2.3 雜訊指數 12 2.3 波長轉換技術 13 2.3.1 光閘式 13 2.3.2 干涉式 15 2.3.3 極化調變式 16 2.3.4 混波式 17 2.3.5 吸收調變式 19 第三章 波長轉換器特性量測 21 3.1 半導體光放大器之動態響應 21 3.1.1 增益動態響應 21 3.1.2 相位動態響應 22 3.2 交叉極化調變 23 3.2.1 CPM波長轉換器理論分析模型 24 3.2.2 交叉極化調變波長轉換器靜態量測 26 3.2.2.1 CPM波長轉換器在不同信號光源功率下的轉換特性 28 3.2.2.2 CPM波長轉換器在不同目的光源功率下的轉換特性 30 3.2.3 正相CPM波長轉換器動態量測 31 3.3 交叉增益調變 35 3.3.1 XGM波長轉換器靜態量測 35 3.3.1.1 XGM波長轉換器在不同信號光源功率下的轉換特性 36 3.3.1.2 XGM波長轉換器在不同目的光源功率下的轉換特性 38 3.3.2 XGM波長轉換器動態量測 38 3.4 輸入信號光功率動態範圍 41 3.4.1 CPM波長轉換器輸入信號光功率動態範圍 42 3.4.1.1 ㄧ對ㄧCPM波長轉換器之輸入信號光功率動態範圍 46 3.4.1.2 ㄧ對二CPM波長轉換器輸入信號光功率動態範圍 48 3.4.2 XGM波長轉換器輸入信號光功率動態範圍 52 第四章 啁啾效應以及傳輸特性 54 4.1 SOA所引起的啁啾效應對波長轉換器效能的影響 54 4.2 轉換信號之傳輸特性 56 4.2.1 原始信號之傳輸特性 57 4.2.2 CPM波長轉換器之傳輸特性 58 4.2.3 XGM轉換信號之傳輸特性 60 4.3 轉換信號之啁啾效應 63 4.4 利用CPM機制提升XGM波長轉換器之傳輸效能 67 4.4.1 實驗架構 68 4.4.2 實驗結果 69 第五章 結論 71 5.1 成果與討論 71 5.2 未來研究方向 72 參考文獻 73

    [1] M. Garnot, M. Sotom, and F. Masetti, “Routing strategies for optical paths in WDM networks,” IEEE International Conference, vol. 1, pp.422-426, June 1997.
    [2] C. Ou, H. Zang, N. K. Singhal, K. Zhu, L. H. Sahasrabuddhe, R. A. MacDonald, and B. Mukherjee, “Subpath protection for scalability and fast recovery in optical WDM mesh networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 9, pp.1859-1875, Nov. 2004.
    [3] http://www.exfo.com
    [4] Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 717-719, Mar. 2005.
    [5]R. Ramaswami, K. N. Sivarajan, Optical networks - A practical perspective, Morgan Kaufmann Inc. , pp. 216-224, 2002.
    [6] A. Sharaiha, “Semiconductor optical amplifiers for future optical networks,” IEEE International Conference 19-23, pp.165-166, Apr. 2004.
    [7] L. Occhi, Semiconductor optical amplifiers made of ridge waveguide bulk InGaAsP/InP: experimental characterisation and numerical modelling of gain, phase, and noise, Doctoral Dissertation, Eidgenossische Technische Hochschule Zurich, 2002.
    [8] T. Durhuus, B. Mikkelesn, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 14, no.68, pp. 942-954, June 1996.
    [9] J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversionof 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photonics Technology Letters, vol. 18, no.1, pp. 298-300, Jan. 2006.
    [10] J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photonics Technology Letters, vol. 17, no. 7, pp. 1474-1476, July 2005.
    [11] 徐明鋒, 利用半導體光放大器實現多播波長轉換器, 國立台灣科技大學電子工程研究所碩士論文, 2003年。
    [12] N. Edagawa, M. Suzuki, S. Yamamoto, and S. Akiba, “Novel wavelength converter using an electroabsorption modulator: conversion experiments at up to 40Gbit/s,” OFC ’97.
    [13] K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE Quantum Electronics, vol. 11, no. 1, pp. 278-284, Jan. 2005.
    [14] J. Mørk, M. L. Nielsen and T. W. Berg, “The dynamics of semiconductor optical amplifiers modeling and applications,” OSA Optics & Photonics News, pp.43-47, July 2003.
    [15] E. Garmire, A. Kost, K. L. Hall, E. R. Thoen, and E. P. Ippen, Nonlinear optics in semiconductor, Academic Press Inc., pp. 112-115, 1999.
    [16] Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J, S, Dorren, “Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 90-92, Jan. 2003.
    [17] C.S.Wong, H. K. Tsang, “Polarization-independent wavelength conversion at 10Gb/s using birefringence switching in a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 87-89, Jan. 2003.
    [18] X. Yang, D. Lenstra, A. K. Mishra, H. D. Waardt, G. D. Khoe, and H. J.S. Dorren, “Propagation of ultrashort optical pulses in a semiconductor optical amplifier: simulation and experimentals,” 5th International Conference on transparent Optical Networks (ICTON’03), We.B5, pp.47-53, June 2003, Warsaw, Poland.
    [19] H. Sanjoh, H. Ishii, H. Yasaka, Y. Yoshikuni, and K. Oe, “Wavelength chirping in wavelength conversion of 10Gb/s signal with semiconductor laser converter, ” IEEE Photonics Technology Letters, vol. 8, no. 2, pp. 296-298, Fab. 1996.
    [20] H. Lee, H. Yoon, Y. Kim, and J. Jeong, “Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA” IEEE Journal of Quantum Electronics, vol. 35, no. 8, pp. 1213-1219, Aug. 1999.
    [21] T. Watanabe, N. Sakaida, H. Yasaka, F. Kano, and M. Koga, “Transmission performance of chirp-controlled Signal by using semiconductor optical amplifier,” Journal of Lightwave Technology, vol. 18, no. 8, pp. 1069-1077, Aug. 2000.

    QR CODE