簡易檢索 / 詳目顯示

研究生: 李宗彥
Zong-Yan Lee
論文名稱: 聚碳酸酯光擴散板之光學性質表現之研究
A Study on optical performance of Polycarbonate plate containing optical diffused particles
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
吳昌謀
Chang-Mou Wu
江宗穎
Zong-Ying Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 光學擴散板混摻高分子加工聚碳酸酯壓克力
外文關鍵詞: optical diffused particles
相關次數: 點閱:214下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨是在探討用於Polycarbonate基質的光擴散劑(Optical Diffuser;OD),主要分為兩大系統(PMMA、Silicone resin),光擴散板之光學效應變化主要是隨著添加之光擴散劑後的效應所影響,透過掃描電子顯微鏡(SEM)、 霧度儀等測試方法探討參數之變化探討其對光學性能之影響。
    基質塑膠粒與光擴散劑混摻方法採用雙螺桿混練擠出機,而光擴散板的製作方式採用射出成型法,得知能滿足光擴散板使用的物性要求之加工條件與方式後,使用此製板加工條件做物性與光學測試所需試片。
    最後的測試,在物性測試依照ASTM D256-10、ASTM D638-02a、ASTM D790之標準規範,測試光擴散板的抗張強度(Tensile Strength)、伸長率(Elongation)、三點彎曲強度(Flexural Strength)以及衝擊強度( Impact Strength);在光學方面則是測試照度與可視角部分。
    實驗結果顯示,在同重量比下,OD平均粒徑越小,光擴散板中OD的Volume fraction越高,故光在通過擴散板時所遇到Powder的機率越高,最後折射出來的角度越大,因而提高可視角(AoV)、霧度(HAZE),造成光擴散效果越好;而Powder的折射率也能影響可視角(AoV)、霧度(HAZE),若與基質的折射率差異越大,AoV、HAZE則越大,添加量與板材厚度影響粒子整體的遮蔽效果,遮蔽效果會隨著此兩種因素增加而增加,使光擴散效果更好。


    The aim of this research is to discuss the optical diffuser (OD) for Polycarbonate matrix. It is mainly divided into two systems (PMMA; Silicone resin) and the optical effect of light diffusing plate is mainly related to the matrix and optical diffuser. The influence of the parameters on the optical properties was investigated by scanning electron microscopy (SEM), haze meter and so on. The method of mixing the matrix plastic particles with the light diffuser adopts the twin-screw extrusion mixer, and the light diffusing plate is produced by the injection molding method. It is known that the processing conditions and methods for satisfying the physical properties required for the use of the light diffusing plate are used to perform the physical and optical specimens. In order to know the physical properties of the light diffusion plate, different tests were carried out. According to the standards ASTM D256-10, ASTM D638-02a and ASTM D790; as follows: Tensile Strength, Elongation, three-point bending strength, and Izod impact strength; in the optical side is the illumination and angle of view.The experimental results show that the smaller the average particle size of OD in the same weight ratio, the higher the volume fraction of OD in the light diffusion plate. Hence, the higher the probability that the light is encountered when passing through the diffuser plate, the greater the angle that is finally refracted, increasing the viewing angle (AoV), haze (HAZE) If the difference between the refractive index of the powder and the matrix is greater, the angle(AoV) and HAZE is larger. The addition of the amount and the thickness of the plate affect the overall effect of the shielding of the particles, the shielding effect will increase with these two factors increase, so that the light diffusion effect is better.

    誌謝 III 摘 要 V Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 :序 論 1 1-1前言 1 1-2 研究背景及產業現況 6 1-3 研究目的及特徵 7 1-4 研究架構 9 第2章 :相關理論及文獻回顧 10 2-1 LCD背光模組簡介 10 2-4-1 背光模組零組件介紹 13 2-2 光學擴散結構 18 2-3-1 光學擴散粉 19 2-3-2 光學擴散原理 20 2-3 聚混摻理論 22 2-2-1 高分子混摻可達之優點: 24 2-2-2 聚混摻體依其相溶型態可分為以下三種情形: 24 2-2-3 判別高分子混摻物間相容性方法有下列幾種方式: 27 2-4 射出法(Injection molding)形成高分子材料 28 2-5 模具微結構應用 32 2-6 文獻回顧 34 2-7-1 微米級聚苯乙烯/聚矽氧烷核殼微球的製備、表徵及其作為光散射劑的應用 34 2-7-2 LCD背光模組中使用PET / PC / PBT共聚物擴散板的熱性質、物理性質和光學性質的分析 34 2-7-3 在LCD背光模組中作為光學漫射器的PMMA複合材料 35 2-7-4 設計LCD背光模組中擴散板光學性能的相關性 35 2-7-5 有微半球結構的LCD擴散板之設計及優化 35 2-7-6 LED背光模組中微結構擴散板的熱變形 36 第3章 :實驗材料儀器與方法 37 3-1 實驗材料 37 3-1-1 Polycarbonate(聚碳酸酯) 37 3-1-2 Polymethylmethacrylate(聚甲基丙烯酸甲酯) 37 3-1-3 Silicone resin (矽氧樹脂) 37 3-2 實驗儀器 38 3-3 實驗方法 40 3-3-1 原料母粒製備 41 3-3-2 試片製備 42 3-4 儀器試驗 43 3-4-1 熱性質 43 3-4-2 力學性質 45 3-4-3 光學分析 48 3-4-4 型態分析 51 第4章 :結果與討論 52 4-1 原物料鑑定 52 4-2 Polycarbonate於微型雙螺桿內之流變特性 53 4-3 Polycarbonate與OD混摻狀態 55 4-4 擴散粒子對基質之物性影響 56 4-5 光擴散板之HAZE、Transmittance影響 57 4-6 光擴散板之拉升影響效應 59 4-7 光擴散板之可視角影響效應 60 4-8 光擴散板之微結構影響效應 61 4-9 結論 62 第5章 :參考文獻 92

    1. 樊汉卿. 聚碳酸酯. 杭州化工. 1984;4(10):54-60.
    2. 艾邦高分子. 中國聚碳酸酯市場分析報告. 2016.
    3. Corporation CM. WONDERLITE® PC樹脂. 2012.
    4. 卓聖鵬. 彩色液晶顯示器. 全華科技圖書館. 民國九十二年十二月:6-45.
    5. Jones MR, VanderPloeg JA, Warmuth MW, Lovshe LD. LCD with diffuser having diffusing particles therein located between polarizers. Google Patents; 1999.
    6. Hsu S-L. LED lampshade injection-molded or pressure cast with an IMD film. Google Patents; 2010.
    7. van den Bergh H, Mizeret J. Light diffuser and process for the manufacturing of a light diffuser. Google Patents; 1996.
    8. Nelson TJ, Wullert JR. Electronic Information Display Technologies: World Scientific; 1997.
    9. Song S, Sun Y, Lin Y, You B. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application. Applied Surface Science. 2013;273:652-60.
    10. 刘言, 吴大鸣, 王海军, 郑秀婷. 光扩散剂及微结构对光扩散板光学性能的影响. 塑料. 2014;43(1):49-51.
    11. Chen B, Xu L, Wang P, Li S. Led lighting device. Google Patents; 2016.
    12. Chang R-S, Tsai J-Z, Li T-Y, Liao H-L. LED backlight module by lightguide-diffusive component. Journal of Display Technology. 2012;8(2):79-86.
    13. Tanaka A. Trends of Blacklisting and Front Lighting System for LCD. 1998.
    14. Noguchi H, editor 17.4: A High‐Efficiency Cold‐Cathode Fluorescent Lamp for a Backlighting Unit. SID Symposium Digest of Technical Papers; 1998: Wiley Online Library.
    15. Watanabe Y. Design considerations for a CCFL and its surroundings. Journal of the Society for Information Display. 1999;7(3):171-6.
    16. Pan J-W, Fan C-W. High luminance hybrid light guide plate for backlight module application. Optics express. 2011;19(21):20079-87.
    17. Sun CC, Moreno I, Chung SH, Chien WT, Hsieh CT, Yang TH. Brightness management in a direct LED backlight for LCD TVs. Journal of the society for information display. 2008;16(4):519-26.
    18. Bourdelais RP, Kaminsky CJ. Light diffuser with variable diffusion. Google Patents; 2005.
    19. 林志龍. 光擴散劑之合成及其光學特性之研究. 成功大學化學工程學系學位論文. 2005:1-66.
    20. 李信興. Silicone 光擴散粒子於壓克力感壓膠製備及其光學表現之研究. 2007.
    21. Konno T, Ochiai T. Optical diffuser. Google Patents; 1997.
    22. Kuo H, Chuang M, Lin C. Design correlations for the optical performance of the particle-diffusing bottom diffusers in the LCD backlight unit. Powder Technology. 2009;192(1):116-21.
    23. Wang J-H, Lien S-Y, Ho J-R, Shih T-K, Chen C-F, Chen C-C, et al. Optical diffusers based on silicone emulsions. Optical Materials. 2009;32(2):374-7.
    24. Keijzer M, Star WM, Storchi PR. Optical diffusion in layered media. Applied Optics. 1988;27(9):1820-4.
    25. Scott C, Macosko C. Model experiments concerning morphology development during the initial stages of polymer blending. Polymer bulletin. 1991;26(3):341-8.
    26. Takayanagi M. The Theories of Polymer Blending. Plastics. 1962;13:1.
    27. Utracki LA, Favis B. Polymer alloys and blends: Marcel Dekker: New York; 1989.
    28. Kienzle SY. Alloys and blends: tying properties to markets. Plast Eng. 1987;43(2):41-3.
    29. Kausch H, editor Mechanical aspects of polymer blending. Macromolecular Symposia; 1991: Wiley Online Library.
    30. Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y. Crystallization, stability, and enzymatic degradation of poly (L-lactide) thin film. Biomacromolecules. 2002;3(2):350-6.
    31. Muzzarelli RAA, Jeuniaux C, Gooday GW. Chitin in nature and technology: Plenum Press; 1986.
    32. Willemse R, De Boer AP, Van Dam J, Gotsis A. Co-continuous morphologies in polymer blends: a new model. Polymer. 1998;39(24):5879-87.
    33. Elmendorp JJ. A study on polymer blending microrheology. Polymer Engineering & Science. 1986;26(6):418-26.
    34. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in polymer science. 2006;31(6):576-602.
    35. Sundararaj U, Macosko C, Shih CK. Evidence for inversion of phase continuity during morphology development in polymer blending. Polymer Engineering & Science. 1996;36(13):1769-81.
    36. Zhang H, Bhagwagar DE, Graf JF, Painter PC, Coleman MM. The effect of hydrogen bonding on the phase behaviour of ternary polymer blends. Polymer. 1994;35(25):5379-97.
    37. Ibrahim BA, Kadum KM. Influence of polymer blending on mechanical and thermal properties. Modern Applied Science. 2010;4(9):157.
    38. Ju M-Y, Chang F-C. Compatibilization of PET/PS blends through SMA and PMPI dual compatibilizers. Polymer. 2000;41(5):1719-30.
    39. Ravivarapu HB, Burton K, DeLuca PP. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. European Journal of Pharmaceutics and Biopharmaceutics. 2000;50(2):263-70.
    40. 刑玉璽. 射出成型之塑膠光學讀取透鏡收縮. 成功大學航空太空工程學系學位論文. 2003:1-110.
    41. 鍾佳伸. 射出成型變模溫方法與成品表面品質之研究. 中央大學機械工程研究所碩士在職專班學位論文. 2008:1-86.
    42. Oktem H, Erzurumlu T, Uzman I. Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials & design. 2007;28(4):1271-8.
    43. Ozcelik B, Sonat I. Warpage and structural analysis of thin shell plastic in the plastic injection molding. Materials & Design. 2009;30(2):367-75.
    44. LIU B, JIANG K-y, SHANG G-n. Numerical Analysis of Plastic Extrusion Flow and Optimization Design of Die Structure [J]. Journal of Huaqiao University (Natural Science). 2008;4:000.
    45. V. Piotter WB, T. Benzler, and A. “Emde,Injection Molding of Components for Microsystems. MicroSystem Technologies. 2001.
    46. Saeki M. Experimental investigation of surface roughness in ultra-precision cutting of plastics. JSPE. 2001.
    47. Lu Zix XZ. Preparation, characterization and application as light scattering agents of micron-size polystyrene/ polysiloxane core/ shell microspheres. Chemical Industry and Engineering 2006;57.
    48. Kim GH, Kim WJ, Kim SM, Son JG. Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units. Displays. 2005;26(1):37-43.
    49. Kim G. A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU). European polymer journal. 2005;41(8):1729-37.
    50. Mingyan L, Daming W, Yajun Z, Jian Z. Optimization and design of LCD diffuser plate with micro-semisphere structure. Procedia Engineering. 2011;16:306-11.
    51. Chien CH, Chen CC, Chen T, Lin YM, Liu YC. Thermal deformation of microstructure diffuser plate in LED backlight unit. Journal of the Society for Information Display. 2016;24(2):99-109.
    52. 陈兰辉. 光气法生产聚碳酸酯的工艺流程. 合成材料老化与应用. 2013年 01期.
    53. ''STANDARD TEST METHOD FOR HAZE AND LUMINOUS TRANSMITTANCE OF TRANSPARENT PLASTICS ''. ASTM D1003.

    QR CODE