簡易檢索 / 詳目顯示

研究生: 羅煜發
Yu-Fa Lo
論文名稱: 基於雙邊濾波係數之超音波成像聲速分析
Optmization of ultrasound bemforming sound velocity using coefficients in bilateral filterig
指導教授: 沈哲州
Che-Chou Shen
口試委員: 沈哲州
choushen@mail.ntust.edu.tw
黃騰毅
Teng-Yi Huang
陸敬互
Ching-Hu Lu
葉佳倫
Chia-Lun Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 最佳成像聲速估計雙邊濾波器影像擴散分析
外文關鍵詞: Optimal imaging sound velocity estimation, Image diffusion, Bilateral filter
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超音波亮度模式(Bmode)成像中,波束成像通常藉由時間延遲的觀念估算物體的位置,並藉由成像後的分析比較來判斷此成像之最佳聲速,由於方法的不同導致其結果並不相同,所以我們將定量分析統一,並且依據不同的方法所畫出來的分析圖判斷方式也由所不同。
在本篇比較影像擴散邊緣銳利與雙通濾波邊緣判斷中,主要檢測方法為根據成像的邊緣銳利度來做最佳聲速的判斷,但在使用兩種方法前,我們也將成像後的純影像來做亮度的分析比較,並分為最亮點的分析與平均亮度分析兩種方法,由於平均亮度分析法的結果,與預期結果有差異所以最終則採納最亮點分析法來做比較,在本邊模擬與實驗中期比較結果大致相同,但在非聚焦區都皆無法準確判斷最佳聲速,估而在結論中會做為討論部分。


In ultrasonic mode (Bmode) imaging, beam imaging usually estimates the position of the object by the concept of time delay, and judges the optimal sound velocity of the image by comparison analysis after imaging. The result is not due to different methods. The same, so we will unify the quantitative analysis, and the method of judging the analysis according to different methods is also different.
In the comparison of image diffusion edge sharpness and double-pass filtering edge judgment, the main detection method is to judge the best sound velocity according to the edge sharpness of imaging, but before using the two methods, we will also image the pure image. To do the analysis and comparison of brightness, and to divide into the two methods of the brightest point analysis and the average brightness analysis. Because the result of the average brightness analysis method is different from the expected result, the brightest point analysis method is finally adopted for comparison. The comparison between the simulation and the experimental mid-term results is roughly the same, but in the non-focus area, the best sound velocity cannot be accurately determined, which is estimated as part of the discussion.

圖 1-1、超音波成像系統示意圖 2 圖 1-2、使用不同成像聲速計算時間補償的接收波束成像示意圖,(a)為Cbeam > Ct,(b)為Cbeam < Ct,(c)為Cbeam = Ct 4 圖 1-3、使用不同聲速產生之B-mode影像圖 5 圖 1-4、圖 1-3掃描線之強度曲線圖 5 圖 1-5、波束形成前的信號振幅變化(a)使用最佳聲速(b)使用其他聲速[4] 8 圖 1-6、聚焦品質因子計算流程圖 [5] 9 圖 1-7、使用三個成像聲速估計橫向NACVF [6] 11 圖 1-8、使用不同成像聲速對同比影像資料所求得ANACVFs [6] 12 圖 1-9、邊緣銳利因子偵測流程圖 [7] 14 圖 1-10(左)、原始影像,圖 1-10(右)、經過雙邊濾波器(Bilateral filter)的B-mode影像, 15 圖 1-11、模擬圖像相位誤差程度對應之亮度增加曲線圖[9] 16 圖 2-1、擴散係數之閥值曲線圖 19 圖 2-2、各個聲速之邊緣度曲線圖(Eec) 20 圖 2-3、左圖沒有偵測到邊緣,右圖偵測到邊緣[8] 21 圖 2-4、影像強度像素值(WP Map) 22 圖 2-5、雙邊濾波之各聲速WP曲線示意圖 23 圖 2-6、系統流程圖 26 圖 3-1、Prodigy超音波影像系統平台 28 圖 3-2、線性陣列探頭(L7.5-SC) 29 圖 3-3、實驗仿體ATS, model 549 31 圖 3-4、五筆樣本曲線圖 33 圖 4-1、模擬影像之ROI位置 34 圖 4-2、影像擴散(Diffusion)聚焦區之均方根誤差長條圖 35 圖 4-3、影像擴散(Diffusion)非聚焦區之均方根誤差長條圖 36 圖 4-4、雙邊濾波(bilateral) 與影像擴散在聚焦區之均方根誤差長條圖 37 圖 4-5、雙邊濾波(bilateral)與影像擴散在非聚焦區之均方根誤差長條圖 38 圖 4-6、影像亮度檢測法在聚焦區之均方根誤差 39 圖 4-7、影像亮度檢測法在非聚焦區之均方根誤差 40 圖 4-8、模擬影像最亮度檢測法 41 圖 4-9、模擬影像亮度平均法 42 圖 4-10、經STA後的ATS仿體的實驗影像之ROI位置(cyst,speckle) 43 圖 4-11、經STA後的ATS仿體的實驗影像之ROI位置(wire) 44 圖 4-12、實驗影像擴散法與雙邊濾波法之均方根誤差圖 45 圖 4-13、實驗影像最亮度檢測與雙邊濾波法之均方根誤差圖 46 圖 5-1、亮度檢測法並對speckle區做最大值與最小值的曲線圖 49

[1] 沈哲州,「醫用超音波影上課講義」,國立台灣科技大學電機所,民國107年
[2] Q. Chen, J. Zagzebski, Simulation study of effects of speed of sound and attenuation on ultrasound lateral resolution, Ultrasound Med. Biol. 30 (2004) 1297–1306.
[3] M. E. Anderson, M. S. McKeag, G. E. Trahey, The impact of sound speed errors on Medical ultrasound imaging, J. Acoust. Soc. Am. 107 (2000) 3540-3548.
[4] S. J. Park, J. Lee, W. Y. Lee, Y. Yoo, Mean sound speed estimation with focusing quality for medical ultrasound imaging, Proc. IEEE Ultrason. Symp. (2011) 2205-2208.
[5] D. Napolitano, C. H. Chou, G. McLaughlin, T. L. Ji, L. Mo, D. DeBusschere, R. Steins, Sound speed correction in ultrasound imaging, Ultrasonics 44 (2006) e43–e46.
[6] X. Qu, T. Azuma, J. T. Liang, Y. Nakajima, Average sound speed estimation using speckle analysis of medical ultrasound data, Int. J. Comput. Assist. Radiol. Surg. 7 (2012) 891–920.
[7] C. Yoon, Y. Lee, T. K. Song, Optimal sound speed estimation using modified nonlinear anisotropic diffusion to improve spatial resolution in ultrasound imaging, IEEE Trans. Ultrason. Ferroeletr. Freq. Control 59 (2012) 905-914.
[8] Yung-Yu Chuang, Bilateral Filters Digital Visual Effects
[9] Levin Nock and Gregg E. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor (1989)
[10] Arshdeep Kaur, Harbinder Singh. An Efficient Approach for Image Denoising Based on Edge-aware Bilateral Filter. IEEE Conference on Signal Processing, (2017) 56-61.
[11] J. A. Jensen, Field: A program for simulating ultrasound systems, Med. Biol. Eng. Comput. 34 (1996) 351–353.

QR CODE