簡易檢索 / 詳目顯示

研究生: 張皓為
HAO-WEI CHANG
論文名稱: 高勁度瀝青混凝土之設計與績效評估
Design and Performance Evaluation of High Stiffness Asphalt Concrete
指導教授: 廖敏志
Min-Chih Liao
口試委員: 黃兆龍
Chao-Lung Hwang
陳建旭
Jian-Shinh Chen
蘇育民
Yu-Min Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 高勁度瀝青混凝土績效試驗車轍試驗績效設計
外文關鍵詞: igh Stiffness Asphalt Concrete
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來台灣交通量遽增,早期車轍破壞現象頻繁產生。目前台灣的瀝青混凝土設計方法,仍採用馬歇爾配比設計來決定各組成材料之使用量,然而,材料設計的成果無法反映鋪面績效。研究以高勁度混凝土為研究材料,比較高勁度瀝青混凝土與一般瀝青混凝土之性能差異,並發展績效試驗使瀝青混凝土更能反映鋪面實際真實受載重情況,本研究內容包括粒料及瀝青黏結料之基本物理性質、浸水耐久性、抗車轍之永久變形能力、多重載重車轍輪跡試驗之疲勞行為,根據傳統力學試驗、勁度績效預測、車轍績效試驗及耐久性試驗等數據,試驗結果顯示,績效配比設計規範上須採用材料體積參數性質要求,以確認瀝青混凝土之正確組成比例;可依路面交通量變化從選擇豐度係數K,來設計瀝青混凝土之瀝青含量,豐度係數K在2.5~3.2之間。從馬歇爾穩定值及間接張力試驗試驗中得出高勁度瀝青凝土之抗變形能力及抗變形強度皆會優於一般瀝青混凝土;以抗車轍能力及瀝青勁度模數來看,高勁度瀝青瀝青混凝土高於一般瀝青混凝土,並以勁度模數14,000MPa作為勁度模數的指標;從水侵害間接張力試驗中得知,抗水侵害能力之排行依序為改質Ⅲ型瀝青混凝土、針入度20/40瀝青混凝土、針入度60/70瀝青混凝土,最後為高黏度瀝青混凝土;疲勞性質則以高黏度瀝青混凝土有最佳之抗疲勞能力,再依序為改質Ⅲ型瀝青混凝土、針入度20/40瀝青混凝土及針入度60/70瀝青混凝土。此外,使用Burger 模型可預測瀝青混凝土車轍變形量,及12.5mm時載重次數,並建議1,000,000次反覆載重後之單位車轍變形量不高於1。


The conventional dense graded asphalt concrete with a penetration grade 60/70 could not be capable of carrying heavily traffic loads, while another built environmental issue related to polymer modified asphalt is the difficulty with the recycling work in the future. A suitable binder course material is high stiffness asphalt concrete. The idea of high stiffness asphalt concrete was to design a mix with hard penetration grade asphalt. The hard grade of the asphalt conferred a higher modulus to the mix which allowed, with equal thickness, to reduce the stresses transmitted to the subgrade. In addition, the asphalt material proportion was designed in terms of the pavement performance-related requirements. The objective of this study was to investigate the rheological properties of hard penetration grade asphalt, and to assess the performance characteristics of the high stiffness as well as conventional asphalt concrete. The results showed that the optimum asphalt content of the asphalt concrete was determined based on the richness modulus (K). The performance characteristics of the stability, indirect tensile strength and permanent deformation for the asphalt concrete could be well interpreted by means of the DSR master curves over a wide range of the temperatures. With regard to the wheel track testing, the polymer modified asphalt mixtures had better resistance to rutting compared to the asphalt concrete with the penetration grade 20/40 asphalt in terms of the proportional rut depth. In addition, The Burgers model satisfactorily explained the mixture rutting behavior. The results clearly demonstrated that rutting resistance was improved with increasing the binder viscosity.

總目錄 摘要 II Abstract III 致謝 IV 總目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 2 1.4研究範圍 3 第二章 文獻回顧 4 2.1 瀝青與瀝青流變 4 2.1.1瀝青特性 4 2.1.2瀝青流變學原理 5 2.1.3時間/溫度重疊原理 6 2.2高勁度瀝青混凝土 8 2.2.1 高勁度瀝青混凝土特性 8 2.2.2 法國EME配比設計法方法 8 2.2.3法國EME績效試驗流程 9 2.3 瀝青混凝土勁度預測模型-赫希模型(Hirsch Model) 12 2.3.1赫希模型之背景 12 2.3.2赫希模型運用於瀝青混凝土 12 2.3.3赫希模型之驗證 13 2.4 車轍輪跡試驗 15 2.4.1車轍輪跡試驗背景 15 2.4.2車轍輪跡性質預測 15 2.4.3 Burger's Model車轍預測模型 16 2.5 瀝青混凝土績效試驗 17 2.5.1績效試驗背景 17 2.5.2績效試驗範圍 17 2.6耐久性 19 2.6.1 疲勞 19 2.6.2 水侵害 20 第三章 研究計畫 22 3.1 試驗範圍 22 3.2 研究流程 23 3.3 試驗材料 24 3.3.1 級配 24 3.3.2 瀝青 25 3.4 試驗方法及設備 27 3.4.1針入度試驗 27 3.4.2軟化點試驗 28 3.4.3黏滯度試驗 29 3.4.4馬歇爾配比設計法 30 3.4.5馬歇爾穩定值試驗 33 3.4.6浸水馬歇爾穩定值試驗 34 3.4.7間接張力試驗 35 3.4.8浸水剝脫試驗 36 3.4.9浸水間接張力試驗 37 3.4.10溫度與頻率掃描試驗 38 3.4.11瀝青混凝土車轍輪跡試驗 40 第四章 結果與分析 42 4.1 材料基本性質 42 4.1.1粒料及級配 42 4.1.2瀝青 44 4.2 瀝青配比設計與體積性質 48 4.2.1傳統馬歇爾配比設計 48 4.2.2法國高勁度瀝青混凝土配比設計與體積性質 50 4.3 傳統力學試驗 52 4.3.1馬歇爾穩定值及流度值試驗 52 4.3.2間接張力試驗 54 4.4 勁度模數績效相關試驗 57 4.4.1瀝青黏結料剪切模數與黏度 57 4.4.2瀝青混凝土勁度績效試驗 60 4.5車轍績效相關試驗 65 4.6 耐久性試驗 81 4.6.1水侵害試驗 81 4.6.2疲勞行為 84 4.7研擬績效配比設計流程 86 4.7.1設計概念 86 4.7.2 績效配比設計步驟 87 4.7.3 績效配比設計流程圖 89 第五章 結論與建議 90 5.1結論 90 5.2建議 91 參考文獻 92 附錄-1 馬歇爾配比設計結果 96 附件-2 浸水間接張力強度與TSR結果 99

林樹豪,(民國93年),“水分侵害對瀝青混凝土之影響”, 德霖學報「第十八期」。
馬峰、傅珍,(2008),「硬質瀝青和高模量瀝青混凝土在法國的應用」,中外公路,第6期,221-223頁。
Al-Hdabi, A. and Al-Nageim, H. (2016). “ Improving Asphalt Emulsion Mixtures Properties Containing Cementitious Filler by Adding GGBS” Journal of Materials in Civil Engineering, Vol. 29,DOI : 04016297.
Airey, G.D., Collop, A.C. , Zoorob, S.E. and Elliott R.C. (2007). “The influence of aggregate, filler and bitumen on asphalt mixture moisture damage”. Construction and Building Materials 22, pp. 2015–2024
Christensen, D., Anderson, D., Bahia, R., Sharma, M. G. and Antle, C. ( 1994), “Binder Characterization and Evaluation Volume 3: Physical Characterization,” Strategic Hihghway Rssearch Program, SHRP-A-369.
Christensen, D.W., Pellinen, T. and Bonaquist, R.F. (2003).“Hirsch models for estimating the modulus of asphalt concrete.” Asphalt Paving Technol., 72, pp.97–121.
Carswell, I., Nicholls, J. C. and Widyatmoko, I., (2011). “Best practice guide for recycling into surface course” Road Note RN43, Transport Reseach Laboratory.
Ekblad, J. and Lundstrom, R. (2016). “Soft bitumen asphalt produced using RAP”. Materials and Structures .50:13, DOI: 10.1617/s11527-016-0871-z
Fakhri, M. and Hosseini S.A. (2017). “Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion”. Construction and Building Materials 134. pp.626–640
Grobler, J., Rebbechi, J. and Denneman, E.(2018). “National Performance -based Asphalt Specification Framework”, Technical Report AP-T331-18, Austroads.. DOI: 01660780
Hu, S., Zhou, F. and Scullion, T. (2011). “Analysis of Rutting Performance Impacting Factors in HMA Overlay Mixture Design” Journal of Testing and Evaluation, Vol. 39, No. 6.
Lesuer, D. (2009). “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification”Advances in Colloid and Interface Science, 145, pp. 42-82.
Massimo, L. and Michael, P., (2016). “Rheological modeling of asphalt binder and asphalt mortar containing recycled asphalt material”. Materials and Structures 49, pp.4167–4183.
McCarthy, L. M., Callans, J., Quigley, R. and Scott, S.V. (2016). “Performance Specification for Asphalt Mixtures,” National Cooperative Highway Research Program (NCHRP), Synthesis 492, Washington, D.C.
Miljkovic, M. and Radenberg, M. (2014). “Fracture behaviour of bitumen emulsion mortar mixtures”. Construction and Building Materials 62, pp.126–134.
McLaughlin, M. (2015). “Evaluation of EME2 type Mixtures incorporating Softer Grade”.Scottish Road Research Board. pp .10-43.
Morassut, P. (2013). “EME Technology Transfer to Australia: An Explorative Study”. Austroads Ltd. pp.15-18.
Ma, T., Wang, H., Huang X., Wang Z. and Xiao Z., (2015). “Laboratory performance characteristics of high modulus asphalt mixture with high-content RAP”.Construction and Buliding Materials 101, pp.975-982.
Pierce, C.E. and Blackwell, M.C., (2003). “Potential of scrap tire rubber as lightweight aggregate in flowable fill”. Waste Management 23, pp. 197–208.
Papagiannakis A.T. and Masad E.A., (2007). “Pavement Design and Materials”.John Wiley & Sons,Inc.
Petersen, J., Robertson E., Branthaver, J., Harnsberger, P., Duvall, S., Christensen, D., Anderson, D., Bahia, R., Dongre, R., Antle, C. and Sharma, M., (1994). “ Binder Characterization and Evaluation Volume 4: Test Methods,” Strategic Hihghway Rssearch Program, SHRP-A-370.
Rothon, R. (2003). Particulate-filled polymer composites, iSmithers Rapra, Shawbury, U.K.
Saha G. and Biligiri K.P., (2018). “Comprehensive Fatigue Mechanism of Asphalt Mixtures: Synergistic Study of Crack Initiation and Propagation”. 2018 American Society of Civil Engineers. DOI: 10.1061/ (ASCE) MT. 1943-5533.0002185.
Stowe, R. L. (1969). “Strength and deformation properties of granite, basalt, limestone and tuff at various loading rates.” No. AEWESMISC –PAPER -C-69-1, Army Engineer Waterways Experiment Station, Vicksburg, MS.
Yusoff, N. I. M., Chailleux, E. and Airey, G. D. (2011). “A Comparative Study of the Influence of Shift Factor Equations on Master Curve Construction,” International Journal of Pavement Research and Technology, 4, pp. 324-336.
Zhang, C. and Shen S., (2015). “Modification of the Hirsch Dynamic Modulus Prediction Model for Asphalt Mixtures”. J. Mater. Civ. Eng.,DOI: 04017241

無法下載圖示 全文公開日期 2023/06/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE