簡易檢索 / 詳目顯示

研究生: 白名琁
Ming-Syuan Bai
論文名稱: 纖維加勁砂土土堤受滲流作用之模型試驗
Model Test on Fiber-reinforced Sandy Embankments Subjected to Seepage
指導教授: 楊國鑫
Kuo-Hsin Yang
鄧福宸
Fuchen Teng
口試委員: 林宏達
Horn-Da Lin
古志生
Chih-Sheng Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 183
中文關鍵詞: 纖維加勁土壤砂箱物理模型試驗滲流坡趾掏刷沖蝕
外文關鍵詞: Fiber-reinforced soil, Model test, Seepage, Toe erosion
相關次數: 點閱:246下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了改善河堤、海堤等堤防水工構造物在豪雨與洪水作用下之穩定性,本研究提出以纖維加勁土壤(Fiber-reinforced soil)為土堤的回填材料,進行了一系列的砂箱物理模型試驗,模型試驗以未加勁與纖維加勁土壤作比較。利用纖維加勁土壤增加土壤的剪力強度以及改善土壤抵抗管湧作用的能力,探討纖維加勁土堤受滲流作用下之力學行為與穩定性,評估其應用於土堤滲流作用下的整體表現。此外,本研究亦考慮增設濾層於土堤坡趾處防止滲流所產生的沖蝕破壞。根據試驗結果顯示,於土堤坡面處加入纖維加勁土壤後,可以提高土堤的穩定性,縮小破壞弧發展的範圍,並延後滲流所造成土堤的破壞時間,亦拉長每階段破壞的時間間隔。模型試驗也證實,當纖維加勁土壤鋪設寬度為0.3倍的土堤高(L/H = 0.3),於土堤坡趾處增設濾層後,在滲流作用下能維持其穩定性,因為濾層能有效控制纖維加勁土壤坡趾掏刷沖蝕的現象,避免了坡趾支撐流失,而造成後續土體破壞的產生。


It has been proven that adding fibers to soil, known as fiber-reinforced soil (FRS), can effectively increase the soil shear strength and improve the piping resistance against seepage. However, the effect of FRS backfilled inside embankments, levees, and the hydraulic structures on improving their stability under seepage conditions has not been fully studied. Accordingly, a series of model tests was conducted to evaluate the performance and stability of embankments backfilled with FRS subjected to seepage. In addition, tests were also conducted to evaluate the effect of placing a filter layer at the toe of the embankment on preventing the seepage induced soil erosion. The test variables are with or without the use of FRS as backfill, the reinforced area of the embankment model, and with or without the placement of the toe filter layer. During test, the distribution and variation of soil water content and porewater pressure were monitored. The failure process and failure mode of embankments were also observed. The test results show FRS can increase the system stability, decrease the failure area, delay the failure timing. The model test confirmed that when the width of reinforced area equals to 0.3 times the embankment height (L/H = 0.3), the embankment with the toe filter layer maintains stable under seepage conditions. The test results also demonstrated that the toe filter layer can effectively resist the soil erosion at the toe and thus prevent the subsequent slope failure due to the loss of soil support at the toe. In the context of disaster mitigation, the research results can be applied to the engineering projects, involving design and repair of river levees, earth dams, and river bank restoration, for effectively controlling seepage within those hydraulic structures.

論文摘要 ABSTRACT 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機與目的 1.2研究方法與論文架構 第二章 文獻回顧 2.1 土壤中的滲流 2.1.1 達西定律(Darcy's equation) 2.1.2 水工構造物破壞案例 2.2 纖維加勁土壤介紹 2.2.1 天然纖維與合成纖維簡介 2.2.2 纖維加勁土壤效用 2.2.3 纖維的幾何定義和方向 2.2.4 纖維加勁土壤的物理性質與工程性質 2.3 纖維加勁土壤之滲透性試驗 2.3.1 添加人造纖維對土壤管湧抵抗力 2.3.2 聚酯纖維飛灰作為堤防回填材料的可行性 2.3.3 天然纖維對土壤水力行為影響 2.4 纖維加勁土堤滲流試驗 2.4.1 地工泡棉應用於邊坡穩定抗滲流滲流之功效 2.4.2 透過離心機試驗進行地工合成材料作為海堤內部排水層試驗 2.4.3 纖維加勁回填土影用於水工構造物之適用性 2.4.4 纖維加勁土壤於現地之應用 第三章 試驗土樣基本性質試驗 3.1 試驗計畫及流程 3.2 試驗土壤基本物理性質試驗 3.2.1 比重試驗 3.2.2 篩分析試驗 3.2.3 相對密度試驗 3.3 試驗土壤工程性質試驗 3.3.1 定水頭試驗 3.3.2 三軸壓密排水試驗 3.4 不飽和土壤水分特性試驗 3.4.1 壓力平板試驗 3.5 纖維加勁材料介紹 第四章 砂箱模型試驗設備與試驗流程 4.1 砂箱模型試驗之設計規劃 4.1.1 砂箱模型試驗設備 4.1.2 土堤模型建構方法 4.1.3 纖維加勁土壤拌合方法 4.1.4 坡趾濾層設計 4.2 量測儀器裝設與攝影器材介紹 4.2.1 量測儀器介紹 4.2.2 量測儀器校正 4.2.3 攝影器材 4.3 砂箱試驗步驟流程 第五章 模型試驗結果與分析討論 5.1 砂箱重複性試驗 5.2 未加勁土堤模型滲流試驗結果 5.3 纖維加勁土提模型滲流試驗結果 5.3.1 L/H = 0.3之纖維加勁 5.3.2 L/H = 0.7之纖維加勁 5.4 土堤砂箱模型試驗綜合比較 5.5 加設坡趾濾層模型滲流試驗結果 5.5.1 未加勁土堤加設坡趾濾層 5.5.2 L/H = 0.3纖維加勁土堤加設坡趾濾層 5.5.3 L/H = 0.7纖維加勁土堤加設坡趾濾層 5.6 加設坡趾濾層模型滲流試驗綜合比較 第六章 結論與建議 6.1 研究結論 6.2 未來可研究之方向

Akay, O., Ozer, A. T., Fox, G.A., Bartlett, S.F., and Arellano, D. (2013). Behavior of sandy slopes remediated by EPS-block geofoam under seepage flow, Geotextiles and Geomembranes, 37, 81-98.
ASTM D421, (2007). “Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants.”Designation: D421-85
ASTM D4253. (2002). Standard test methods for maximum index density and unit weight of soils using a vibratory table: ASTM International, West Conshohocken, PA, USA.
ASTM D4254. (2000). Standard test methods for minimum index density and unit weight of soils and calculation of relative density: ASTM International, West Conshohocken, PA, USA.
ASTM D6836, “Standard Test Methods for Determination of the Soil Water Chararcteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge.”Designation: D6836-02
ASTM D792. (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement: ASTM International, West Conshohocken, PA, USA.
Bear, J. (1972). Dynamics of fluids in porous media. New York, American Elsevier. Co.
Bonelli, S. (2012). Erosion of Geomaterials. John Wiley & Sons Inc. London.
Bonelli, S., & Nicot, F. (2013). Erosion in Geomechanics Applied to Dams and Levees.
Comiti, J., Sabiri, N. E., & Montillet, A. (2000). Experimental characterization of flow regimes in various porous media-III: Limit of Darcy's or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chemic
Danka, J. and Zhang, L.M. (2015). Dike failure mechanisms and breaching parameters, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 141(9), 04015039.
Danka, J. and Zhang, L.M., (2015), Dike failure mechanisms and breaching parameters, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 141(9), 04015039.
Das, A., and Viswanadham, B.V.S., (2010). Experiments on the piping behavior of geofiber-reinforced soil. Geosynthetics International, 17(4), 171-182.
Das, A., Jayashree, C., & Viswanadham, B. V. S. (2009). Effect of randomly distributed geofibers on the piping behaviour of embankments constructed with fly ash as a fill material. Geotextiles and Geomembranes, 27(5), 341-349.
Diambra, A., Russell, A. R., Ibraim, E., & Wood, D. M. (2007). Determination of fibre orientation distribution in reinforced sands. Geotechnique, 57(7), 623-628.
Divya, P. V., Viswanadham, B. V. S., & Gourc, J. P. (2018). Hydraulic conductivity behaviour of soil blended with geofiber inclusions. Geotextiles and Geomembranes, 46(2), 121-130.
Estabragh A., Soltannajad K., Javadi A. (2014). Improving piping resistance using randomly distributed fibers, Geotextiles and Geomembranes, 42, 15-24.
Falorca, I.M.C.F.G., Gomes, L.M.F., Pinto, M.I.M. (2011). A full-scale trial embankment construction with soil reinforced with short randomly distributed polypropylene microfibers. Geosynthetics International, 18 (5), 280-288
Foster, M., Fell, R., and Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024.
Furumoto, K, Miki, H, Tsuneoka,N and Obata ,T. (2002). Model test on the piping resistance of short fiber reinforced soil and its application to river levee, 7th International Conference on Geosynthetics, Nice, France, 1241-1244.

Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116.
Huang, W. C., Weng, M. C., & Chen, R. K. (2014). Levee failure mechanisms during the extreme rainfall event: a case study in Southern Taiwan. Natural Hazards, 70(2), 1287-1307.
Ibraim, E., Diambra, A., Russell, A. R., & Muir Wood, D. (2012). Assessment of laboratory sample preparation for fibre reinforced sands. Geotextiles and Geomembranes, 34, 69-79.
Ozer, A. T., Akay, O., Fox, G.A., Bartlett, S.F., and Arellano, D. (2014). A new method for remediation of sandy slopes susceptible to seepage flow using EPS-block geofoam, Geotextiles and Geomembranes, 42, 166-180.
Polemio, M., & Lollino, P. (2011). Failure of infrastructure embankments induced by flooding and seepage: a neglected source of hazard. Natural Hazards and Earth System Sciences, 11(12), 3383-3396.
Puppala, J., Musenda, C. (2000). Effects of fiber reinforcement on strength and volume change behavior of expansive soils. Transportation Research Record No. 1736, Washington, USA.
Peck, R. B., & Terzaghi, K. (1948). Soil mechanics in engineering practice.
Rice, J. D. and Duncan J.M. (2010). Findings of case histories on the long-term performance of seepage barriers in dams. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 136(1), 2-15.
Rice, J.D., Duncan, J.M., and Davidson, R.R. (2007). Identification of failure mechanisms associated with seepage barriers in dams. Embankment, Dams, and Slopes, ASCE, 1-11.
Santoni, R.L., Tingle, J.S., Webster, S.L. (2001). Engineering properties of sand-fibre mixtures for road construction. Journal of Geotechnical & Geoenvironmental Engineering, ASCE 127(3), 258-268
Saran, R. K., & Viswanadham, B. V. S. (2018). Centrifuge model tests on the use of geosynthetic layer as an internal drain in levees. Geotextiles and Geomembranes, 46(3), 257-276.
Seguin, D., Montillet, A., Comiti, J., & Huet, F. (1998). Experimental characterization of flow regimes in various porous media-II: Transition to turbulent regime. Chemical Engineering Science, 53(22), 3897-3909.
Setty, S., Murthy, A. (1987). Behavior of fiber-reinforced Black Cotton soil. IGC (90), Bombay; 45-9.
Setty, S., Rao, G. (1987). Characteristics of fiber reinforced lateritic soil. IGC (87), Bangalore, India.
Shukla S.K. (2016). An introduction to geosynthetic engineering. CRC Press/Taylor and Francis, London
Shukla, S. K. (2017). Fundamentals of fibre-reinforced soil engineering. New York, NY: Springer Berlin Heidelberg.
Sivakumar Babu, G. L., & Vasudevan, A. K. (2008). Strength and stiffness response of coir fiber-reinforced tropical soil. Journal of materials in civil engineering, 20(9), 571-577.
Tang, C. J., Zheng, P., Zhang, L., Chen, J. W., Mahmood, Q., Chen, X. G., ... & Yu, Y. (2010). Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere, 79(6), 613-619.
Thomas RW, Verschoor KL. (1988). Thermal analysis of geosynthetics. Geotechnical Fabrics Report, IFAI, 6 (3) (1988), pp. 24-30.
van Genuchten, M.T. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.”Soil science society of America journal, 44(5), 892-898.
Wan, C.F. (2006). Experimental investigation of piping erosion and suffusion of soils in embankment dams and their foundations. PhD thesis, University of New South Wales, Australia.
Wrachien, D., & Mambretti, S. (2009). Dam-Break Problems, Solutions and Case Studies, 36, WIT Press.
Williams Mathieu Adilehou. (2017). 「Hydraulic Reponses of Fiber-Reinforced Soils Susceptible to Piping and Suffusion Failures」,國立臺灣科技大學碩士論文,台北。
Yang, K-H., Adilehou, W.M., Jian, S-T., & Wei, S-B. (2017). Hydraulic Response of Fiber-Reinforced Sand Subject to Seepage. Geosynthetics International.
Yetimoglu, T., Inanir, M., Inanir, O.E. (2005) A study on bearing capacity of randomly distributed fibre-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23(2), 174-183
Yetimoglu, T., Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibres. Geotextiles and Geomembranes, 21(2), 103-110
Zornberg, J. G. (2002). Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Geotechnique, 52(8), 593-604.
馮高原. (2010). 「錨定織網系統邊坡加勁模型試驗」,國立臺灣大學碩士論文,台北。
黃渝紋. (2012). 「三軸壓縮試驗探討蜂巢格網的圍束效應」,國立臺灣大學碩士論文,台北。
簡碩廷. (2016). 「Experimental and Numerical Studies on Hydraulic Response of Fiber-Reinforced Sand」,國立臺灣科技大學碩士論文,台北。
魏韶邦. (2017). 「Fiber-Reinforced Gap-Graded Soil against Suffusion」,國立臺灣科技大學碩士論文,台北。
陳均維. (2017). 「多階加勁邊坡受降雨入滲破壞之試驗與分析研究」,國立臺灣科技大學碩士論文,台北。

QR CODE