簡易檢索 / 詳目顯示

研究生: 張雅惠
Ya-hui Zhang
論文名稱: 過表現 LRO1 基因對於Yarrowia lipolytica Po1g生長速率與脂質產量之影響
Effects of over-expressing LOR1 gene in Yarrowia lipolytica Po1g on enhancing its growth rate and lipid production
指導教授: 朱義旭
Yi-Hsu Ju
蔡伸隆
Shen-Long Tsai
口試委員: Suryadi Ismadji
Suryadi Ismadji
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: hp4d啟動子TEFintron啟動子磷脂甘油二酯醯基轉移酶耶氏解脂酵母
外文關鍵詞: hp4d promoter, TEFintron promoter, LRO1, Yarrowia lipolytica
相關次數: 點閱:216下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生質柴油被視為是一種可再生的替代能源,生產生質柴油的商業原料主要是植物和/或動物脂肪。微生物的單一細胞油是生產生質柴油一種有潛力的原料。在眾多微生物中,含油酵母菌Yarrowia lipolytica是生產單一細胞油的一種有潛力的選擇,它能將脂質儲存在脂質體(LB)內,而其脂質主要由三酸甘油酯(TAGs)和甾醇酯(SEs)組成。三酸甘油酯合成的最終步驟是藉由二醯基甘油醯基轉移酶(DGA1)或磷脂甘油二酯醯基轉移酶(LRO1)醯化二醯基甘油酯(DAG)而生產三酸甘油酯。在本研究中,選用LRO1基因以過表現在Y. lipolytica中,並探討其對生物質量及脂質含量的影響。本研究發現所有的品種偏好於在較低溫的環境下生長以及TEFintron啟動子有補救生長缺陷的能力。本研究顯示出用hp4d啟動子過表現LRO1基因的物種,脂質產率在28 oC 及 25 oC下分別是控制組的1.1倍及1.2倍。而用TEFintron啟動子過表現LRO1基因的物種,脂質產率在28 oC 及 25 oC下分別是控制組的1.17倍及1.31倍。


Biodiesel has been considered as a renewable, alternative energy. Commercial feedstock of biodiesel production mainly is vegetable and/or, animal fat. Single cell oil from microorganism is a potential feedstock for biodiesel production. Among microorganisms, the oleaginous yeast Yarrowia lipolytica is a potential candidate for single cell oil production, which store lipid in lipid body (LB) and it is mainly composed of triacylglycerols (TAGs) and steryl esters (SEs). The final step of TAG synthesis is acylation of diacylglyceride (DAG) either by diacylglycerol acyltransferase (DGA1) or by phospholipid diacylglycerol acyltransferase (LRO1) to produce TAG. In this study, LRO1 gene was choose to over-express in Y. lipolytica and its effect on biomass and lipid content was investigated. It was found that all strains showed higher preferences at lower temperature and TEFintron promoter has the ability to remedy growth defect. The results show that the strain over-expressing LRO1 gene driven by hp4d promoter exhibited 1.1-fold and 1.2-fold in lipid yield compared to control strain at 28 oC and 25 oC, respectively. The strain over-expressing LRO1 gene driven by TEFintron promoter exhibited 1.17-fold and 1.31-fold in lipid yield of that of the control strain at 28 oC and 25 oC, respectively.

中文摘要...................................................................... I Abstract.....................................................................II Acknowledgement.............................................................III Contents.................................................................... IV List of Figures............................................................VIII List of Tables...............................................................XI Chapter 1.....................................................................1 Introduction..................................................................1 1.1 Background of study...................................................1 1.2 Objectives of this study..............................................2 Chapter 2.....................................................................3 Literature review.............................................................3 2.1 Yarrowia lipolytica.......................................................3 2.1.1 Y. lipolytica Po1g strain...............................................3 2.1.2 Lipid accumulation in Y. lipolytica.....................................4 2.2 Genetic manipulation for Y. lipolytica....................................7 2.2.1 pYLEX1 vector...........................................................8 2.2.2 Hp4d promoter...........................................................9 2.2.3 TEFintron promoter......................................................10 2.3 LRO1 gene.................................................................10 2.3.1 Previous studies on LRO1 gene...........................................11 Chapter 3.....................................................................13 Methodology...................................................................13 3.1 Experimental materials....................................................13 3.1.1 Microorganism...........................................................13 3.1.2 Plasmid.................................................................13 3.1.3 Primer..................................................................13 3.1.4 Enzyme..................................................................14 3.1.5 Kits....................................................................14 3.1.6 DNA Marker..............................................................14 3.1.7 Chemicals...............................................................14 3.2 Culture medium and reagent................................................15 3.2.1 Culture medium..........................................................15 3.2.1.1 LB medium + ampicillin medium.........................................15 3.2.1.2 YPD medium............................................................15 3.2.1.3 YPD medium pH4........................................................15 3.2.1.4 YNB solid medium......................................................15 3.2.1.5 LB medium + ampicillin solid medium...................................16 3.2.1.7 YNB solid plate.......................................................16 3.2.2 Reagent.................................................................16 3.2.2.1 DNA reagent...........................................................16 3.2.2.2 Transformation reagent................................................16 3.3 Apparatus and equipments..................................................17 3.4 Conceptual framework of methodology.......................................17 3.5 Genetic manipulation......................................................24 3.5.1 Genomic DNA Extraction..................................................24 3.5.2 Polymerase Chain Reaction (PCR) ........................................25 3.5.3 Agarose gel electrophoresis.............................................26 3.5.4 Gel extraction..........................................................26 3.5.5 Plasmid extraction......................................................27 3.5.6 Restriction enzyme .....................................................28 3.5.7 Enzymatic DNA solution purification.....................................29 3.5.8 Restriction enzyme digestion............................................30 3.5.9 Formation of recombinant DNA molecule (ligation)........................31 3.5.10 Preparation of E. coli competent cell..................................32 3.5.11 Transformation of E. coli Top10 by heat shock..........................33 3.5.12 Colony PCR of E. coli..................................................33 3.5.13 Linearization of plasmid...............................................34 3.5.14 Preparation of Yarrowia lipolytica competent cell......................34 3.5.15 Transformation of Yarrowia lipolytica..................................35 3.5.16 Colony PCR of Yarrowia lipolytica......................................36 3.6 Fermentation..............................................................37 3.6.1 Inoculum................................................................37 3.6.2 Biomass measurement.....................................................38 3.7 Soxhlet extraction........................................................38 3.8 Total reducing sugar estimation...........................................39 Chapter 4.....................................................................40 Results and Discussion........................................................40 4.1 Vector construction.......................................................40 4.1.1 Construction of pYLRO1 vector and Y. lipolytica transformation..........40 4.1.2 Construction of pYTEFin vector..........................................44 4.1.3 Construction of pYTEFinLRO1 vector and Y. lipoylitica transformation....45 4.2 Effect of over expression of LRO1 driving by hp4d.........................48 4.2.1 Growth rate.............................................................48 4.2.2 Lipid analysis..........................................................52 4.3 Effect of over-expression of LRO1 driving by TEFintron promoter...........55 4.3.1 Growth rate analysis....................................................55 4.3.2 Lipid analysis..........................................................57 Chapter 5.....................................................................63 Conclusion and Future Prospects...............................................63 Reference.....................................................................64

1. Atabani, A.E., et al., A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 2012. 16(4): p. 2070-2093.
2. Nicaud, J.M., Yarrowia lipolytica. Yeast, 2012. 29(10): p. 409-18.
3. Chuang, L.-T., et al., Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnology, 2010. 27(4): p. 277-282.
4. Beopoulos, A., et al., Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol, 2008. 74(24): p. 7779-89.
5. Banas, A., et al., The involvement of phospholipid:diacylglycerol acyltransferases in triacylglycerol production. Biochem Soc Trans, 2000. 28(6): p. 703-5.
6. Dahlqvist, A., et al., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6487-92.
7. Oelkers, P., et al., A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem, 2000. 275(21): p. 15609-12.
8. Athenstaedt, K., YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta, 2011. 1811(10): p. 587-96.
9. Zhang, H., H.G. Damude, and N.S. Yadav, Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. Yeast, 2012. 29(1): p. 25-38.
10. Barth, G. and C. Gaillardin, Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 1997. 19(4): p. 219-237.
11. Perez-Campo, F.M. and A. Dominguez, Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol, 2001. 43(6): p. 429-33.
12. Morin, N., et al., Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One, 2011. 6(11): p. e27966.
13. Athanasios Beopoulos and J.-M. Nicaud, Yeast: A new oil producer? DOSSIER LIPOCHIMIE, 2012. 19( OCL ): p. 22 - 28.
14. Scioli, C. and L. Vollaro, The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Research, 1997. 31(10): p. 2520-2524.
15. Madzak, C., C. Gaillardin, and J.-M. Beckerich, Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology, 2004. 109(1–2): p. 63-81.
16. Papanikolaou, S., et al., Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. European Journal of Lipid Science and Technology, 2009. 111(12): p. 1221-1232.
17. Papanikolaou, S., et al., Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 2002. 58(3): p. 308-312.
18. Le Dall, M.T., J.M. Nicaud, and C. Gaillardin, Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet, 1994. 26(1): p. 38-44.
19. Madzak, C., B. Treton, and S. Blanchin-Roland, Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol, 2000. 2(2): p. 207-16.
20. Beopoulos, A., et al., Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 2009. 48(6): p. 375-387.
21. Beopoulos, A., T. Chardot, and J.M. Nicaud, Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 2009. 91(6): p. 692-6.
22. Kennedy, E.P., Biosynthesis of complex lipids. Fed Proc, 1961. 20: p. 934-40.
23. Dulermo, T. and J.M. Nicaud, Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng, 2011. 13(5): p. 482-91.
24. Tai, M. and G. Stephanopoulos, Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 2013. 15(0): p. 1-9.
25. Wang, J., B. Zhang, and S. Chen, Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochemistry, 2011. 46(7): p. 1436-1441.
26. Wang, Z.P., et al., Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta, 2013. 1831(4): p. 675-82.
27. John Seip, et al., Snf1 Is a Regulator of Lipid Accumulation in Yarrowia lipolytica. Applied and Enviromental Microbiology, 2013. 79.
28. Le Hir, H., A. Nott, and M.J. Moore, How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci, 2003. 28(4): p. 215-20.
29. Sorger, D., et al., A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem, 2004. 279(30): p. 31190-6.
30. Stahl, U., et al., Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol, 2004. 135(3): p. 1324-35.
31. Sorger, D. and G. Daum, Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol, 2003. 61(4): p. 289-99.
32. BRANDA-The Comprehensive Enzyme Information System. Reaction catalyzed by phospholipid:diacylglycerol acyltransferase (2.3.1.158) [cited 2014 5.22]; Available from: http://www.brenda-enzymes.info/Mol/reaction-popup.php4?id=36936&type=I&displayType=marvin.

QR CODE